• 제목/요약/키워드: Aluminum etching

검색결과 171건 처리시간 0.027초

측면 완충영역을 갖는 $LiNbO_3$ 자기정렬 리지 광도파로의 제작 ($LiNbO_3$ Self-aligned Ridge Waveguide with Dielectric Side Buffers)

  • 조영보;정형기;신상영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.783-786
    • /
    • 2003
  • A simple fabrication method of self-aligned ridge waveguides with dielectric side buffers is demonstrated on +Z- cut LiNbO$_3$. The ridge waveguide is fabricated by a combination of the annealed proton exchange process and the proton-exchanged wet etching technique. The self-aligned process is achieved by wet etching of aluminum.

  • PDF

Aluminum Thin Film Capacitor Using Micro Pore Patterning and Electroless Ni-P plating

  • 이창형;;김태유;서수정
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.113-113
    • /
    • 2011
  • 알루미늄 박막 커패시터 제작을 위해 선택적인 알루미늄 etching과 anodizing을 이용한 유전체($Al_2O_3$) 형성, 전극층 형성을 위한 무전해 Ni-P 도금을 진행하였다. $5{\mu}m$ patterns/$10{\mu}m$ space를 가지는 dot patterns을 알루미늄 기판에 patterning하고, 이를 각각의 전류밀도 조건에서 etching한 후, barrier type anodizing을 진행하였다. 유전체에 전극층은 무전해 Ni-P 도금을 통해 형성하였으며, 이렇게 제작된 알루미늄 박막 커패시터 특성을 평가하였다.

  • PDF

스트레처블 배선용 저저항 알루미늄-몰리브데늄 합금에 대한 연구 (A study on the Low Resistance Aluminum-Molybdenum Alloy for stretchable metallization)

  • 이민준;배진원;박수연;최재익;김건호;서종현
    • 한국표면공학회지
    • /
    • 제56권2호
    • /
    • pp.160-168
    • /
    • 2023
  • Recently, investigation on metallization is a key for a stretchable display. Amorphous metal such as Ni and Zr based amorphous metal compounds are introduced for a suitable material with superelastic property under certain stress condition. However, Ni and Zr based amorphous metals have too high resistivity for a display device's interconnectors. In addition, these metals are not suitable for display process chemicals. Therefore, we choose an aluminum based amprhous metal Al-Mo as a interconnector of stretchable display. In this paper, Amorphous Forming Composition Range (AFCR) for Al-Mo alloys are calculated by Midema's model, which is between 0.1 and 0.25 molybdenum, as confirmed by X-ray diffraction (XRD). The elongation tests revealed that amorphous Al-20Mo alloy thin films exhibit superior stretchability compared to pure Al thin films, with significantly less increase in resistivity at a 10% strain. This excellent resistance to hillock formation in the Al20Mo alloy is attributed to the recessed diffusion of aluminum atoms in the amorphous phase, rather than in the crystalline phase, as well as stress distribution and relaxation in the aluminum alloy. Furthermore, according to the AES depth profile analysis, the amorphous Al-Mo alloys are completely compatible with existing etching processes. The alloys exhibit fast etch rates, with a reasonable oxide layer thickness of 10 nm, and there is no diffusion of oxides in the matrix. This compatibility with existing etching processes is an important advantage for the industrial production of stretchable displays.

MERIE형 반응로를 이용한 AlSi의 식각 특성 (Properties of AlSi etching using the MERIE type reactor)

  • 김창일;김태형;장의구
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권2호
    • /
    • pp.188-195
    • /
    • 1996
  • The AlSi etching process using the MERIE type reactor carried out with different process parameters such as C1$_{2}$ and N$_{2}$ gas flow rate, RF power and chamber pressure. The etching characteristics were evaluated in terms of etch rate, selectivity, uniformity and etched profile. As the N2 gas flow rate is increased, the AlSi etch rate is decreased and uniformity has remained constant within .+-.5%. The etch rate is increased and uniformity is decreased, according to increment of the C1$_{2}$ gas flow rate, RF power and chamber pressure. Selective etching of TEOS with respect to AlSi is decreased as the RF power is increased while it is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, on the other hand, selective etching of photoresist with respect to AlSi is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, it is decreased as the N$_{2}$ gas flow rate is increased.

  • PDF

ECR 식각 공정에 따른 층간절연막 폴리이미드의 전기적 특성 (Electrical Properties of Interlayer Low Dielectric Polyimide with Electron Cyclotron Resonance Etching Process)

  • 김상훈;안진호
    • 마이크로전자및패키징학회지
    • /
    • 제7권3호
    • /
    • pp.13-17
    • /
    • 2000
  • ECR (Electron Cyclotron Resonance) 식각 공정에 따른 층간 절연막 폴리이미드의 전기적 특성에 관하여 연구하였다. 알루미늄 식각시 일반적으로 사용되는 $Cl_2$플라즈마는 폴리이미드의 유전상수 값을 증가시킨 반면에 $SF_{6}$플라즈마의 경우는 높은 식각률과 유전상수 값의 감소를 가져왔다. 폴리이미드의 누설 전류는 ECR 식각 공정 후에 감소되었다. 다중 금속화 구조를 구현하는데 있어 $Cl_2$플라즈마를 사용하여 알루미늄을 식각하고 $SF_{6}$ 플라즈마를 사용하여 폴리이미드를 식각하는 것이 최적일 것으로 판단된다.

  • PDF

Template 방법을 이용한 Hybrid Supercapacitor 전극용 알루미늄 분말 디스크 제조와 에칭 조건 연구 (Fabrication of Aluminum Powder Disk by a Template Method and Its Etching Condition for an Electrode of Hybrid Supercapacitor)

  • 진창수;이용성;신경희;김종휘;윤수길
    • 전기화학회지
    • /
    • 제6권2호
    • /
    • pp.145-152
    • /
    • 2003
  • 전해 캐패시터와 supercapacitor의 특성을 함께 가지는 하이브리드 캐패시터의 용량은 표면이 산화물로 피복된 양극에 의해서 좌우된다 본 연구에서는 고전압 하이브리드 슈퍼캐패시터의 제조를 위해 양극의 용량 최적화를 수행하였다. $40{\mu}m$의 입자경을 갖는 알루미늄 분말과 NaCl분말을 4:1의 무게비로 혼합하여 디스크 형태의 전극을 만들고 열처리를 하였다. 열처리 후 $50^{\circ}C$의 증류수에서 NaCl을 용해시켜 열처리 온도에 따른 용량과 저항을 비교하였다. 최적의 열처리 과정을 거친 후 electropolishing 및 화학처리, 1차 및 2차 에칭을 단계별로 행하였고 각각의 단계에서 최적의 조건을 조사하였다 각각의 단계에서의 용량과 저항은 ac impedance analyzer를 사용하여 측정하였으며 전극의 표면은 SEM을 이용하여 관찰하였다. 2차 에칭 후 내전압이 300V급인 전극으로 만들기 위하여 365V로 양극산화 시켰으며, 산화된 알루미늄 디스크 전극을 사용하여 단위 셀을 제조하여 주파수에 따른 용량과 저항 특성을 기존의 300V급 알루미늄 전해 캐패시터와 비교하였다.

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF

AAO를 이용한 나노 패턴 마스터 제작에 관한 연구 (Study on Fabrication of Highly Ordered Nano Patterned Master by Using Anodic Aluminum Oxidation)

  • 신홍규;권종태;서영호;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.368-370
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. The resulting good filled uniform nano molded structure through hot embossing molding process shows the validity of the fabricated nano pattern masters.

  • PDF

The formation of highly ordered nano pores in Anodic Aluminum Oxide

  • Im, Wan-soon;Cho, Kyung-Chul;Cho, You-suk;Park, Gyu-Seok;Kim, Dojin
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.53-53
    • /
    • 2003
  • There has been increasing interest in the fabrication of nano-sized structures because of their various advantages and applications. Anodic Aluminum Oxide (AAO) is one of the most successful methods to obtain highly ordered nano pores and channels. Also It can be obtained diverse pore diameter, density and depth through the control of anodization condition. The three types of substrates were used for anodization; sheets of Aluminum on Si wafer and Aluminum on Mo-coated Si wafer. In Aluminum sheet, a highly ordered array of nanoholes was formed by the two step anodization in 0.3M oxalic acid solutions at 10$^{\circ}C$ After the anodization, the remained aluminum was removed in a saturated HgCl$_2$ solution. Subsequently, the barrier layer at the pore bottom was opened by chemical etching in phosphoric acid. Finally, we can obtain the through-channel membrane. In these processes, the effect of various parameters such as anodizing voltage, anodizing time, pore widening time and pre-heat treatment are characterized by FE-SEM (HITACH-4700). The pore size. density and growth rate of membrane are depended on the anodizing voltage and temperature respectively. The pore size is proportional to applied voltage and pore widening time The pore density can be controlled by anodizing temperature and voltage.

  • PDF