• 제목/요약/키워드: Aluminum electrode

검색결과 234건 처리시간 0.033초

a-Si:H Photodiode Using Alumina Thin Film Barrier

  • Hur Chang-Wu;Dimitrijev Sima
    • Journal of information and communication convergence engineering
    • /
    • 제3권4호
    • /
    • pp.179-183
    • /
    • 2005
  • A photodiode capable of obtaining a sufficient photo/ dark current ratio at both forward bias state and reverse bias state is proposed. The photodiode includes a glass substrate, an aluminum film formed as a lower electrode over the glass substrate, an alumina film formed as an insulator barrier over the aluminum film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the alumina film, and a transparent conduction film formed as an upper electrode over the hydro-generated amorphous silicon film. A good quality alumina $(Al_2O_3)$ film is formed by oxidation of aluminum film using electrolyte solution of succinic acid. Alumina is used as a potential barrier between amorphous silicon and aluminum. It controls dark-current restriction. In case of photodiodes made by changing the formation condition of alumina, we can obtain a stable dark current $(\~10^{-12}A)$ in alumina thickness below $1000{\AA}$. At the reverse bias state of the negative voltage in ITO (Indium Tin Oxide), the photo current has substantially constant value of $5{\times}10^{-9}$ A at light scan of 100 1x. On the other hand, the photo/dark current ratios become higher at smaller thicknesses of the alumina film. Therefore, the alumina film is used as a thin insulator barrier, which is distinct from the conventional concept of forming the insulator barrier layer near the transparent conduction film. Also, the structure with the insulator thin barrier layer formed near the lower electrode, opposed to the ITO film, solves the interface problem of the ITO film because it provides an improved photo current/dark current ratio.

금속알루미늄의 전기화학적 성질과 응용 (Electrochemical Properties of Metal Aluminum and Its Application)

  • 탁용석;강진욱;최진섭
    • 공업화학
    • /
    • 제17권4호
    • /
    • pp.335-342
    • /
    • 2006
  • 금속 알루미늄의 낮은 환원전위는 전기화학적 산화반응을 통하여 알루미늄과 그 표면에 존재하는 산화막의 구조 및 성질의 변화를 일으킨다. 산성용액에서 알루미늄을 전기화학적으로 에칭하여 표면적을 확대시키고 중성의 용액에서 알루미늄 표면에 치밀한 유전체 산화막을 형성시켜 커패시터의 전극으로 이용하고 있다. 저온의 산성용액에서는 양극산화시 나노크기의 다공층 산화막이 형성되며, 나노구조체의 템플레이트로 사용되고 있다. 이와같은 알루미늄의 전기화학적 특성은 알루미늄을 새로운 기능성을 가진 재료로 변화시킴으로서 다양한 분야에서 응용될 것으로 기대된다.

Electrode Thickness Optimization at Full Color OLED and Analysis of Power Consumption

  • Park, Sung-Joon;Kim, Ok-Tae;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권3호
    • /
    • pp.106-110
    • /
    • 2004
  • The operating condition of the OLED (organic light-emitting diode) is very sensitive to electrode thickness properties. The electrode thickness is a significant issue in the construction of OLEDs because of its transparency, high conductivity and high efficiency as an injector into organic materials. We carried out a systematic study to optimize the electrode thickness conditions in Indiumtin oxide (ITO), Molybdenum (Mo) and Aluminum (Al). Further, we measured electrode thickness under standard conditions [ITO 1500$\AA$, Mo 2600$\AA$, Al 1500$\AA$]. We also evaluated power consumption. In addition, we analyzed substrate uniformity with IVL measurement results. From these results, it is known that the electrode thickness should be optimized in order to accomplish optimal power efficiency.

화상처리용 마이크로 미러의 동특성 측정기술 (Dynamic Characteristics Measurement of Micro Mirror for Image Display)

  • 이은호;김규로
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.371-376
    • /
    • 1997
  • A 100*100.mu.m$^{2}$ aluminum micro mirror is designed and fabricated using a thick photoresist as a sacrificial layer andas a mold for nickel electroplating. The micro mirror is composed of aluminum mirror plate, two nickel support posts, two aluminum hinges, two address eletrodes, and two landing electrodes. The aluminum mirror plate,which is supported by two nickel support posts, is overhung about 10.mu.m from the silicon substrate. THe aluminum mirror plate is actuated like a seesaw by electrostatic force generated by electic potential difference applied between the mirror plate and the address electrode. This paper presents some methods to measure the optical and the dynamic characteristics of the fabricated micro mirror.

  • PDF

전기저항가열 압출점접합공정에 있어서 접합강도에 관한 연구 (A Study of the Weld Strength of Extru-Rivet Spot Welding Using Electrodes Heated by Electric Resistance)

  • 이성준;진인태
    • 소성∙가공
    • /
    • 제22권4호
    • /
    • pp.189-195
    • /
    • 2013
  • In this study, the weld strength of extru-rivet spot welding was investigated by simulation and experiment. In order to obtain hot plasticity flow bonding of the two plates by a single rivet, electrodes are used for heating of the two plates and the rivet by electric resistance. Because weld strength is influenced by the temperature in the weld zone, the diameter of the electrodes and the amount of current supplied to the electrodes are important variables. For the simulation, heat distribution and weld strength were calculated using DEFORM-3D. The weld strength in the weld zone was calculated for various values of the experimental parameters. The simulation results showed that the weld strength was the highest when the weld current was 37kA, the electrode diameter was 12mm, and the welding frequency was 90cycle. Aluminum 5052 was used for the experimental study. A total of three aluminum plates, two welding plates with 1mm thickness and one plate with 2mm thickness for the inserting rivet, were used for the experimental extru-rivet spot welding.

스퍼터링을 통하여 다공성 양극산화 알루미늄 기판에 증착되는 니켈 박막의 기공 크기 조절 (Control of the Pore Size of Sputtered Nickel Thin Films Supported on an Anodic Aluminum Oxide Substrate)

  • 지상훈;장춘만;정우철
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.434-441
    • /
    • 2018
  • The pore size of nickel (Ni) bottom electrode layer (BEL) for low-temperature solid oxide fuel cells embedded with ultrathin-film electrolyte was controlled by changing the substrate surface morphology and deposition process parameters. For ~150-nm-thick Ni BEL, the upper side of an anodic aluminum oxide (AAO) substrate with ~65-nm-sized pores provided ~1.7 times smaller pore size than the lower side of the AAO substrate. For ~100-nm-thick Ni BEL, the AAO substrate with ~45-nm-sized pores provided ~2.6 times smaller pore size than the AAO substrate with ~95-nm-sized pores, and the deposition pressure of ~4 mTorr provided ~1.3 times smaller pore size than that of ~48 mTorr. On the AAO substrate with ~65-nm-sized pores, the Ni BEL deposited for 400 seconds had ~2 times smaller pore size than the Ni BEL deposited for 100 seconds.

Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

  • Khosa, Muhammad Kaleem;Jamal, Muhammad Asghar;Hussain, Amira;Muneer, Majid;Zia, Khalid Mahmood;Hafeez, Samia
    • 대한화학회지
    • /
    • 제57권3호
    • /
    • pp.316-321
    • /
    • 2013
  • Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickle (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electro-coagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost.

카퍼 프탈로시아닌의 완충효과 (Buffer Effect of Copper Phthalocyanine(CuPC))

  • 김정현;신동명;손병청
    • 한국응용과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.307-311
    • /
    • 1999
  • Interfacial properties of electrode and organic thin layer is one of the most important factor in performing a Light Emitting Diodes(LED). Phthalocyanine copper was used as a buffer layer to improve interface characteristic, so that device efficiency was improved. In this study, LEDs were fabricated as like structures of Indium-Tin-Oxide (ITO) / N,N' -Diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) / 8-Hydroxyquinoline aluminum(Alq) / Aluminum(Al) and Indium-Tin-Oxide(ITO) / N,N'-Diphenyl-N,N' -di(m-tolyl)-benzidine(TPD) / 2-(4-Biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole(PBD) / Aluminum(Al). In these devices, CuPC was layered at electrode/organic layer interface. As position is changing and thickness is changing, devices showed characteristic luminescence efficiency and luminescence inensity respectively. We showed in this study that luminescence efficiency was improved with CuPC layer in LEDs. The efficiency of device with layer CuPC is higher than that of 2 layer CuPC. However, the luminescence of 2 layer CuPC device got higher value.

Preparation and Characterization of Thin Films by Plasma Polymerization of Hexamethyldisiloxane

  • Lee, Sang-Hee;Lee, Duck-Chool
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권10호
    • /
    • pp.66-71
    • /
    • 1998
  • Plasma polymerized hexamethyldisiloxane (PPHMDSO) thin films were produced using an electrode capacitively coupled apparatus. Fourier transform infrared spectroscopy analysis indicated that the thin film spectra are composed not only of the corresponding monomer bands but also of several new bands. Auger electron spectroscopy analysis indicated that the permeation depth of aluminum into the films is ca. 30nm when top electrode is deposited by evaporation aluminum. The increase of relative dielectric constant and decrease of dielectric loss tangent with the discharge power is originated from high cross-link of the films.

  • PDF

알루미늄 재의 전해연마 가공특성에 관한 연구 (A Study on the Machining Characteristics of the Electropolishing of Aluminum)

  • 조규선;박봉진;이은상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.943-946
    • /
    • 1997
  • Electropolishing is the controlled electrochemical removal of surface metal, resultmg in a brilliant appearance andimproved properties. Sometimes described as "reverse plating," the process has a leveling effect, which produces smoothnessand increased reflectivity. Unlike conventional mechanical finishing systems, the electropolishing does not smear, bend,stress or fracture the crystalline metal surface to achieve smoothness. Instead, electropolishing removes metal from thesurface producing a unidirectional pattern that is stress-free, microscopically smooth and often highly reflective. In addition,improved corrosion resistance and passivity are achieved on many ferrous and some non-ferrous alloys. Pure aluminium doesnot electropolish well, if at all, but most other alloys of aluminum electropolish excellently.Therefore, the aim of this study is to determine the characteristics of electropolishing aluminium alloy in term of currentdensity, machining time, temperature, electrode gap and workpiece surface measurementkpiece surface measurement

  • PDF