• Title/Summary/Keyword: Aluminum contamination

Search Result 52, Processing Time 0.029 seconds

Regeneration of nitrate and phosphate from toilet wastewater using waste alumina adsorbent for cultivation of Spirulina platensis

  • Lee, Sang-Jun;Park, Seonghwan;Noh, Won;Yeom, Dong-Hyuk;Kim, Sooyeon;Kim, Dae-wook;Kim, Jungmin
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.393-399
    • /
    • 2020
  • The use of different types of wastewater (WW) for the cultivation of microalgae and cyanobacteria during recent decades has provided important economic and environmental benefits. However, direct use of WW can lead to growth inhibition and biomass contamination. In the present study, we separated the key WW nutrients, namely nitrate and phosphate, by adsorption and regeneration and used the resulting regenerated water to cultivate the cyanobacterium Spirulina platensis. The adsorbent was granular γ-alumina derived from waste aluminum cans. This procedure recovered 19.9% of nitrate and 23.7% of phosphate from WW. The cyanobacterial cultures efficiently assimilated the nutrients from the medium prepared using regenerated WW, and the growth and nutrient uptake were similar to those in a synthetic medium. In addition, imposing nutrient limitations to increase carbohydrate productivity was easily achieved using regenerated wastewater nutrients, without requiring additional dilution or complex processing. In acute toxicity tests, the harvested biomass in a regenerated medium had similar toxicity levels compared to the biomass obtained from a synthetic medium. The proposed method of using regenerated WW to produce contamination-free biomass has broad potential applications.

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF

MOCVD Deposition of AlN Thin Film for Packaging Materials

  • Chang-Kyu, Ahna;Seung-Chul Choi;Seong-Hoon Cho;Sung-Hwan Han;Je-Hong Kyoung
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.118-118
    • /
    • 2000
  • New single-source precursor, [AlCI3:NH2tBu] was synthesized for AlN thin f film processing with AICI3 (Aluminum Chloride) and tBuNH2 (tert-butylamine). AlN thin films for packaging aspplication were deposited on sapphire substrate by a atmosph하ie-pressure MOCVD. In most of other study methyl-based AI precursors w were used for source, But herein Aluminum Chloride was used for as AI source i in order to prevent the carbon contamination in the films and stabilize the p precursor. New precursor showed the very high gas vapor pressure so it allowed to m make the film under atmospheric-pressure and get the high purified film. High q quality AlN thin film was obtained at 700 to $900^{\circ}C$. The new precursor was p purified by a sublimation technique and help to fabricate high purity film. It s showed high vapor pressure, which is able to a critieal factor for the high purity a and atmospheric CVD of AlN. High Quality AIN thin film was obtained at $700-900^{\circ}C$. The AIN film was characterized by RBS

  • PDF

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.

Influence of transient surface hydrogen on Aluminum catalyzed Silicon nanowire growth

  • Sin, Nae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.125.2-125.2
    • /
    • 2016
  • Semiconductor nanowires are essential building blocks for various nanotechnologies including energy conversion, optoelectronics, and thermoelectric devices. Bottom-up synthetic approach utilizing metal catalyst and vapor phase precursor molecules (i.e., vapor - liquid - solid (VLS) method) is widely employed to grow semiconductor nanowires. Al has received attention as growth catalyst since it is free from contamination issue of Si nanowire leading to the deterioration of electrical properties. Al-catalyzed Si nanowire growth, however, unlike Au-Si system, has relatively narrow window for stable growth, showing highly tapered sidewall structure at high temperature condition. Although surface chemistry is generally known for its role on the crystal growth, it is still unclear how surface adsorbates such as hydrogen atoms and the nanowire sidewall morphology interrelate in VLS growth. Here, we use real-time in situ infrared spectroscopy to confirm the presence of surface hydrogen atoms chemisorbed on Si nanowire sidewalls grown from Al catalyst and demonstrate they are necessary to prevent unwanted tapering of nanowire. We analyze the surface coverage of hydrogen atoms quantitatively via comparison of Si-H vibration modes measured during growth with those obtained from postgrowth measurement. Our findings suggest that the surface adsorbed hydrogen plays a critical role in preventing nanowire sidewall tapering and provide new insights for the role of surface chemistry in VLS growth.

  • PDF

Trends of Advanced Multi-Material Technology for Light Materials based on Aluminum (알루미늄 기반 Advanced Multi-Material 기술의 선진 동향)

  • Lee, Mokyoung;Jung, Sung-Hun
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.19-25
    • /
    • 2016
  • Global warming is hot issue to keep the earth everlastingly. Despite the increase of the world population and the energy demand, the world oil supply and the oil price are hold the steady state. If we are not decrease the world population and the energy consumption, unforeseeable energy crisis will come in the immediate future. AMT acronym of Advanced Materials for Transportation is a non-profitable IEA-affiliated organization to mitigate the oil consumption and the environment contamination for the transportation. In recent, Annex X Multi-materials Joining was added to enhance the car body weight reduction cause the high fuel efficiency and the low emission of exhaust gas. Multi-materials are the advanced materials application technology to optimize the weight, the performance and the cost with the combination of different materials such as Al-alloy, Mg- alloy, AHSS and CFRP. In this study, the trends of AMT strategy and Al-alloy based multi-materials joining technology were review. Also several technologies for Al-alloy dissimilar joining were investigated.

Measures to improve water quality of Lake Euiam by controlling the incoming pollutants to the lake (의암호에 유입되는 오염물질 관리를 통한 호소 수질개선 방안)

  • Hwang, Hwan-Min;Yi, Geon-Ho;Kim, Mi-Yeon;Kim, Dong-Jin;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.783-790
    • /
    • 2011
  • The purpose of this study was to suggest the alternative measures to properly manage the water quality of Lake Euiam, Chuncheon. Current pollution level of Gongji stream (influent to Lake Euiam) and sources of contamination in Lake Euiam were investigated. Particle size, organic matter and nutrient contents, heavy metals were analyzed for sediment samples taken from lower region of Gongji stream. Average organic matter content of nine sediment samples was 5.7%, and for nitrogen and phosphorus it was 750 mg/kg and 977mg/kg, respectively. Heavy metals including aluminum, iron, manganese and zinc were measured, whereas Cd and As were not detected. Effluent from Chuncheon Wastewater Treatment Plant appeared to be one of the main cause of organic matter and nutrients level in Lake Euiam. Inhibition of primary production and consequent reduction of organic matter content within the Lake should be a key measure to protect the water quality of Lake Euiam. Preventive measures to reduce the level of nutrients in wastewater treatment effluent were found necessary.

Development of a PLD heater for continuous deposition and growth of superconducting layer

  • Jeongtae Kim;Insung Park;Gwantae Kim;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.14-18
    • /
    • 2023
  • Superconducting layers deposited on the metal substrate using the pulsed laser deposition process (PLD) play a crucial role in exploring new applications of superconducting wires and enhancing the performance of superconducting devices. In order to improve the superconducting property and increase the throughput of superconducting wire fabricated by pulsed laser deposition, high temperature heating device is needed that provides high temperature stability and strong durability in high oxygen partial pressure environments while minimizing performance degradation caused by surface contamination. In this study, new heating device have been developed for PLD process that deposit and growth the superconducting material continuously on substrate using reel-to-reel transportation apparatus. New heating device is designed and fabricated using iron-chromium-aluminum wire and alumina tube as a heating element and sheath materials, respectively. Heating temperature of the heater was reached over 850 ℃ under 700 mTorr of oxygen partial pressure and is kept for 5 hours. The experimental results confirm the effectiveness of the developed heating device system in maintaining a stable and consistent temperature in PLD. These research findings make significant contributions to the exploration of new applications for superconducting materials and the enhancement of superconducting device performance.

Comparative Analysis of Heavy Metal Contamination, Mineral Composition and Spectral Characteristics of White, Reddish Brown and Mixed Precipitates Occurring at Osip Stream Drainage, Gangwondo, South Korea (강원도 오십천 수계에 분포하는 백색침전물, 적갈색침전물 및 혼합침전물의 중금속 오염, 광물조성 및 분광학적 특성의 비교분석)

  • Lim, Jeong Hwa;Yu, Jaehyung;Shin, Ji Hye;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.13-28
    • /
    • 2019
  • This study analyzed precipitation environment, heavy metal contamination, and mineral composition of white, reddish brown and mixed precipitates occurring at the Osip stream drainage, Gangwondo. Furthermore, spectral characteristics of the precipitates associated with heavy metal contamination and mineral composition was investigated based on spectroscopic analysis. The pH range of the precipitates was 4.43-6.91 for white precipitates, 7.74-7.94 for reddish brown precipitates, and 7.59-7.9 for the mixed precipitates, respectively. XRF analysis revealed that these precipitates were contaminated with Ni, Cu, Zn, and As. The white precipitates showed high Al concentration compared to reddish brown precipitates as much as 3.3 times, and the reddish brown precipitates showed high Fe concentration compared to white precipitates as much as 15 times. XRD analysis identified that the mineral composition of the white participates was aluminocoquimbite, gibbsite, quartz, saponite, and illite, and that of reddish brown precipitates was aluminum isopropoxide, kaolinite, goethite, dolomite, pyrophyllite, magnetite, quartz, calcite, pyrope. The mineral composition of the mixed precipitates was quartz, albite, and calcite. The spectral characteristics of the precipitates was manifested by gibbsite, saponite, illite for white precipitates, goethite, kaolinite, pyrophyllite for reddish brown precipitates, and albite for the mixed precipitates, respectively. The spectral reflectance of the precipitates decreased with increase in heavy metal contamination, and absorption depth of the precipitates indicated that the heavy metal ions were adsorbed to saponite and illite for white precipitates, and goethite and magnetite for reddish brown precipitates.

Alum and Hydroxide Routes to ${\alpha}-Al_2O_3$ (I) Calculation of Solubility Diagram for Extracting the Pure Alumina from Alumino-Silicate and its Experimetal Confirmation (명반 및 수산화 알루미늄을 이용한 ${\alpha}$-Al$_2$O$_3$의 합성 (I) 규산 알루미늄광으로부터 순수한 ${\alpha}$-Al$_2$O$_3$ 추출을 위한 용해도 모델 계산 및 실험적 검증)

  • Yoo Jong-Seok;Choy Jin-Ho;Han Kyoo-Seung;Han Yang-Su;Lee Chang-Kyo;Lee Nang-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.414-421
    • /
    • 1991
  • High-purity alumina powder was prepared by extracting the natural alumino-silicate mineral (halloysite) in H$_2$SO$_4$ solution. For the selective precipitation of alum and aluminum hydroxide, the solubility diagram was prior calculated by also considering the formation of hydroxides and carbonates for all the metal ions in an aqueous solution, which allow us to control the contamination of impurities envolved in the natural minerals. Ammonium aluminum sulfate (alum) and alumium hydroxide could be successfully prepared at pH = 1.5∼2.5 and pH = 6∼8, respectively according to our solubility diagrams. The purity of alum-and hydroxide-derived ${\alpha}-Al_2O_3$ was determined to be 99.7${\%}$ and 99.0${\%}$, respectively, which indicates the former route would be more desirable for the large scale application. It is also worthy to note that the impurities like Na and Si were strongly reduced in the former (Na = 0.05${\%}$, Si = 0.09${\%}$) compared to the latter (Na = 0.29${\%}$, Si = 0.12${\%}$).

  • PDF