• 제목/요약/키워드: Aluminum alloy 2024

검색결과 75건 처리시간 0.023초

표면 거칠기에 따른 액적의 증발 냉각 (Evaporation Cooling of Droplet due to Surface Roughness)

  • 방창훈;권진순;예용택
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.29-33
    • /
    • 2003
  • The objective of the present work is to examine evaporation cooling of droplet due to surface roughness on a heated surface. The surface temperatures varied from 80-$160^{\circ}C$ on aluminum alloy (AL 2024) md surface roughness was 0.l8$\mu\textrm{m}$ 1.36$\mu\textrm{m}$. The results are as follows; Regardless of surface roughness, as droplet diameter is bigger, the in-depth temperature of solid decreases and evaporation time increases. In the case of same initial temperature on the heated surface, as droplet diameter is smaller and small surface roughness is bigger, evaporation time decreases and time averaged heat flux increases.

On the fatigue performance of Aluminum alloy 2024 scarfed lap joints

  • Yan, W.Z.;Gao, H.S.;Yuan, X.;Wang, F.S.;Yue, Z.F.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.35-49
    • /
    • 2012
  • A series of fatigue test were carried out on scarfed lap joints (SLJ) using in airfoil siding to explore the effect of structural details, such as rows of rivets, lap angles, on its fatigue performance. Finite element (FE) analysis was employed to explore the effect of lap angle on load transfer and the stress evolution around the rivet hole. At last, the fatigue lives were predicted by nominal stress approach and critical plane approach. Both of the test results and predicted results showed that fatigue life of SLJ was remarkably increased after introducing lap angle into the faying surface. Specimen with the lap angle of $1.68^{\circ}$ exhibits the best fatigue performance in the present study.

CT 시편을 이용한 박판재료의 파괴인성 특성 (Fracture toughnesses of thin sheet materials by using CT specimens)

  • 이억섭;이윤표;강인모;김선용;김승권
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2090-2095
    • /
    • 1997
  • The plane stress fracture toughness for thin aluminum alloy(2024-T3 and 7075-T6) specimens are characterized by using compact-tension (CT) specimens. Anti-buckling plates were fabricated on both sides of the thin CT specimens to prevent the buckling phenomena which caused by the 45.deg. C plastic yielding at the crack tip under the plane stress condition. The plane stress fracture toughnesses determined by three different procedures are compared with each others. The plane stress fracture toughnesses are also compared with a few published values which were determined by using center-cracked panel specimens.

내부에 그루브와 스크린 메쉬를 갖는 평판 스트립형 히트파이프의 열성능에 대한 실험적 연구 (An Experimental Study on the Thermal Performance of a Flat-Ship Heat Pipe with Inner Grooves and Screen Mesh Cover)

  • 박수용;부준홍
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.805-813
    • /
    • 2005
  • The thermal performance of a flat-strip heat pipe with inner grooves and the screen mesh cover was investigated experimentally. The heat pipes were made of 2024 aluminum alloy of which the dimensions were 30 (W) $\times$ 4 (T) $\times$ 150 (L) mm. The cross sectional dimensions of inner groove were 0.4$\times$0.9 mm and the space between grooves was 0.6 mm. To enhance the capillary force, foe screen meshes were attached to cover the grooved inner surface. In the grooved heat pipes without screen mesh cover, the maximum thermal load of 180 W (12 W/$cm^2$) was achieved for operating temperature below $130^{\circ}C$ at horizontal position. The heat pipes with screen mesh cover showed the thermal resistances less than one third of those without screen mesh cover, and showed less fluctuation in the thermal resistance values. Furthermore, the thermal performance of the former exhibited less dependence on the tilt angle and the fill charge ratio.

고력 알루미늄 합금의 파괴특성에 관한 시효처리의 영향 (Effect of Aging Treatment on Fracture Characteristics of High Strength Al-Alloy)

  • 문창권;오세규
    • 수산해양기술연구
    • /
    • 제20권1호
    • /
    • pp.23-29
    • /
    • 1984
  • 고역알루미늄합금의 파괴특성에 미치는 시효열처리의 영향에 대하여 검토한 결과는 다음과 같다. 1. 현미경 조직의 관찰결과 $190^{\circ}C,$ 12hr로 시효열처리한 것이 시효강화된 양호한 조직과 미세한 석출분포를 나타내고 있음을 알 수 있었다. 2. 계단식시효열처리에 의하여 정상시효열처리보다 시효시간을 반정도로 단축시킬 수 있었고, 이들 조직도 유사하였다. 3. 인장파단면의 SEM 전자현미경 사진관찰결과는 $190^{\circ}C,$ 12hr으로 시효열처리한 것은 딤플형 입계 및 입내연성파괴를 나타내나, 이를 제외한 대부분은 시효열처리 시간과 온도에는 관계없이 입계연성파괴인 것이 관찰되었다.

  • PDF