• Title/Summary/Keyword: Aluminum Sulfate

Search Result 210, Processing Time 0.033 seconds

Addition of Coagulants for Phosphorus Removal from Combined Sewer Overflows (CSOs) (합류식 하수관거 월류수의 인제거를 위한 응집제 투여)

  • Son, Sang-Mi;Jutidamrongphan, Warangkana;Park, Ki-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.295-302
    • /
    • 2012
  • The coagulation of combined sewer overflows ($CSO_{s}$) was investigated by jar-testing with several commercial coagulants. $CSO_{s}$ sample showed different characteristics of coagulation from secondary wastewater with three common coagulants, aluminum sulfate, ferric chloride and polyaluminum chloride (PACl). Jar-tests showed that relatively wide range of optimal SS and T-P removal yielded with alum and ferric chloride compared with cationic polymers, though efficient SS and T-P removal can be achieved with all three coagulants. The decrease of pH was caused by the increase in dosage of aluminum sulfate, ferric chloride and PACl as coagulants. The pH was changed from 7.0 to 4.7 with the dosages of ferric chloride 25 mL/L. Aluminum sulfate revealed pH of 5.0 and PACl was highest pH of 5.4 after dosing of coagulants. The optimal pH to treat $CSO_{s}$ with aluminum sulfate were 6-6.5; with PACl 6-7, and with ferric chloride higher than 7.

Chemical Coagulation Conditions and Efficiency of Sewage with Al(III) and Fe(III) Coagulants (하수의 화학적 응집조건 및 응집제별 응집효율 분석)

  • Park, June-Gue;Tian, Dong-Jie;Park, Noh-Back;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.463-474
    • /
    • 2010
  • In this study, chemical coagulation conditions for treating combined sewer overflow(CSO) occurred during rainy season were evaluated by jar tests with aluminum sulfate[$Al_2(SO_4)_3{\cdot}17H_2O$] and ferric chloride[$FeCl_3{\cdot}6H_2O$]. The raw domestic sewage sampled from the primary sedimentation tank at a local sewage treatment plant was filtered through $150{\mu}m$ sieve before using. Point of zero charge(PZC) for various dose of aluminum sulfate occurred at pH 5.8-6.5, while for ferric chloride occurred at pH 5.3-6.0 in term of streaming current(SC) values. Charge neutralization ability of aluminum sulfate was bigger than that of ferric chloride. Optimum pH and dose of aluminum sulfate and ferric chloride were 6.2, 0.438mM and 5.8, 0.925mM, respectively. Removal efficiencies of TCOD, turbidity, SS and TP were 75, 97, 95, 96% with aluminum sulfate and 74, 96, 98, 99% with ferric chloride at their optimum coagulation conditions. More efficient removal of SS, TP and small particles was possible with ferric chloride at optimum coagulation conditions. Both SC values and COD removal started to increase where soluble phosphorus was completely removed.

Development of White Carbon, Silica Gel and Aluminum Sulfate from Clay Minerals (점토광물로부터 백카본, 실리커겔 및 황산반토 개발에 관한 연구)

  • 박희찬;조원제;최경남
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.5
    • /
    • pp.437-446
    • /
    • 1987
  • In this study the attempts were made to investigate the possibilities of using domestic clay minerals and zeolite, which are available in almost unlimitted quantities, for preparation of aluminum sulfate, white carbon and silica gel. Aluminum sulfate was obtained by the method of sulfuric acid treatment. White carbon and silica gel were prepared by utilizing crystalline silica which was obtained as a by product during preparing the aluminum sulfate. White carbon was obtained by reacting 5.0 weight percent sulfuric acid solution with water glass which was a reaction product of crystalline silica and soldium hydroxide in a autoclave, while silica gel was obtained by reaction 10.0 weight percent acetic acid solution with water glass.

  • PDF

Optimization of Microalgae Harvesting Using Flocculation and Dissolved Air Floatation (Flocculation과 Dissolved Air Floatation을 이용한 미세조류 수확 최적화)

  • Kwon, Hyuck-Jin;Jung, Chang-Kyou;Kim, Nam-Hoon;Lee, Jin-Won
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • The harvesting of microalgae is a critical step that precedes biodiesel conversion. The most widely used harvesting technology is flocculation and floatation. In this study, the efficiency of the flocculants aluminum sulfate and poly aluminum chloride were evaluated for harvesting the alga Dunaliella tertiolecta in conjunction with dissolved air floatation. Using the jar test the optimum concentration range for aluminum sulfate was 1.0~1.5 g/L and for poly aluminium chloride, 1.5~2.0 g/L. The degree of coagulation was visualized by microscopy. Further analysis in combination with dissolved air floatation showed that the optimal concentration for aluminum sulfate was 1.1 g/L and for poly aluminum chloride, 1.6 g/L.

Effect of Aluminum Potassium Sulfate Addition on the Color Change in Caesalpinia Sappan Dyeing by Rice Straw Ash Solution (볏짚 잿물 매염에 의한 소목 염색에서 명반 첨가가 색상변화에 미치는 영향)

  • Seo Hee-Sung;Jeon Dong-Won;Kim Jeon-Jun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.11
    • /
    • pp.1465-1474
    • /
    • 2005
  • The primary purpose of this study is to investigate the differences in the characteristics of the mordants, synthetic aluminum mordants and ash solutions as natural mordants, used in Caesalpinia sappan dyeing. By introducing aluminum potassium sulfate in the ash solutions, the behavior of the aluminum in the ash solutions were observed. In the rice straw ash solutions, adjusted to the levels of pH6 and pH10, the aluminum potassium sulfate was introduced to achieve various concentration levels. From the analysis of the ash solution of pull, $K^+$ and $Na^+$ ion concentrations were found to be extremely high, while $Al^+$ ion concentration was 0. The color development in the Caesalpinia sappan dyeing by ash solution mordanting was found to be mainly governed not by the mordanting actions of the metallic ions but by those of alkali components. In the case of cotton, the application of pH10 ash solution promoted reddish color development compared to the case of non-mordanting, regardless of the aluminum potassium sulfate addition. In the case of silk, the application of pH10 ash solution increased a* value and decreased b* value compared to the case of non-mordanting.

Effects of Green Tea Activities in Rats with Administration of Aluminum in Drinking Green Tea (녹차 음용이 알루미늄을 투여한 흰쥐의 혈청 효소 활성도에 미치는 영향)

  • 신미경;한성희;한경조
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.2
    • /
    • pp.127-134
    • /
    • 1996
  • This study was performed to investigate the effects of green tea activites in rats with administration of aluminum in drinking green tea. Male Sprague-Daweley rats were divided into five groups consisting of the control, aqueous green tea at the level of 1.5%, a aquous green tea(1.5%) and aluminum sulfate solution 500ppm, before the 2 weeks administration by aquous green tea(1.5%) and after the 2 weeks aluminum sulfate solution 500ppm, aluminum sulfate solution 500ppm. After 4weeks of feeding, serum enzymes activites were measured for experimental rats, and analyzed the activites of alanine amino trans aminase(ALT), asparate amino transminase(AST) , lactate dehydrogenase(LDH), cholinesterase(ChE). Comparing to control group, Alanine amino trans aminase (ALT) was decreased in aqueous green tea administrated group and increased significantly administration by aluminum sulfate solution 500ppm group. Alanine amino trans aminase(ALT) was decreased administration by aqueous green tea group and Increased addition to aluminum sulfate solution 500ppm group as compared to control group. Lactate dehydrogenase(LDH) was increased compared to control group by experimental group and increased significantly administration by aluminum sulfate solution 500ppm. Cholinesterase (ChE) activity was decreased compared to control group by experimental group.

  • PDF

Effect of Water and Aluminum Sulfate Mole Ratio on Pore Characteristics in Synthesis of AlO(OH) Nano Gel by Homogeneous Precipitation (균일침전에 의한 AlO(OH) 나노 겔 합성에서 물/황산알루미늄의 몰 비가 세공특성에 미치는 영향)

  • Choe, Dong-Uk;Park, Byung-Ki;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.564-568
    • /
    • 2006
  • AlO(OH) nano gel is used in precursor of ceramic material, coating material and catalyst. For use of these, not only physiochemical control for particle morphology, pore characteristic and peptization but also studies of synthetic method for preparation of advanced application products were required. In this study, AlO(OH) nano gel was prepared through the aging and drying process of aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and aluminum sulfate solution. In this process, optimum synthetic condition of AlO(OH) nano gel having excellent pore volume as studying the effect of water and aluminum sulfate mole ratio on gel precipitates has been studied. Water and aluminum sulfate mole ratio brought about numerous changes on crystal morphology, surface area, pore volume and pore size. Physiochemical properties were investigated as using XRD, TEM, TG/DTA, FT-IR, and $N_2$ BET method.

Evaluation of Neutralizing Capacities of Antacid Products (제산제의 중화 능력의 평가 연구)

  • 박경호;차수만;최진석;김낙두
    • YAKHAK HOEJI
    • /
    • v.27 no.2
    • /
    • pp.139-148
    • /
    • 1983
  • The neutralizing capacities of the antacids, which are frequently used in Korean market, were evaluated in vitro by the methods of Resset and Rice, Fordtran and Collyns, and modified Beekman, respectively. The antacids used in the study are two kinds, the one is preparations from Seoul National University Hospital and the other is products from pharmaceutical companies, and their components are aluminum phosphate, aluminum hydroxide, magnesium aluminum hydroxide, magnesium hydroxide, basic aluminum sucrose sulfate and $2MgO{\times}Al_{2}O_{3}{\times}SiO_{3}$, etc. The hospital preparations, DMC and MAC powders, showed most powerful and sustained neutralizing capacities, i.e. they maintained the pH range from 5 to 8 for 60min, Whereas pharmaceutical products, aluminum hydroxide gel containing magnesium hydroxide and magnesium aluminum hydroxide gel exhibited a moderate capacities, i.e pH ranged from 3 to 6, and aluminum phosphate, $2MgO{\times}Al_{2}O_{3}{\times}SiO_{2}$ and basic aluminum sucrose sulfate displayed a weak activity, pH ranged from 2 to 3. When the therapeutic doses of aluminum hydroxide gel containing magnesium hydroxide and magnesium aluminum hydroxide gel were divided into 2 doses and each dose was used at the interval of 30min., the divided doses kept more prolonged higher pH than the single therapeutic dose. Milliequivalents of neutralizing capacities of each antacid were measured by the method of Fordtran and Collyns. The milliequivalents per 1ml of aluminum hydroxide gel, aluminum hydroxide gel containing magnesium hydroxide, magnesium aluminum hydroxide gel and aluminum phosphate were 2.87, 2.86, 2.57, and 0.67, respectively. The milliequivalents per 100mg of preparations, i.e. MAC powder, dried aluminum hydroxidgel, DMC powder, 2MgO, $Al_{2}O_{3}$. $SiO_{2}$, magnesium aluminum hydroxide and basic aluminum sucrose sulfate were 1.91, 1.68 1.63, 1.45, 1.44, and 0.44, respectively.

  • PDF

Preparation of Aluminum Nitride Powders and Whiskers Using Aluminum(III) Salts as a Precursor

  • Jung, Woo-Sik;Chae, Seen-Ae
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.720-724
    • /
    • 2003
  • Aluminum nitride (AlN) powders were synthesized by using a mixture of an aluminum nitrate or sulfate salt and carbon (mole ratio of $Al^{3+}$ to carbon=L : 30). The AlN was obtained by calcining the mixture under a flow of nitrogen in the temperature range 1100-1$600^{\circ}C$ and then burning out the residual carbon. The process of conversion of the salt to AlN was monitored by XRD and $^{27}$ Al magic-angle spinning (MAS) NMR spectroscopy. The salt decomposed to ${\gamma}$-alumina and then converted to AlN without phase transition from ${\gamma}$-to-$\alpha$-alumina. $^{27}$ Al MAS NMR spectroscopy shows that the formation of AlN commenced at 110$0^{\circ}C$. AlN powders obtained from the sulfate salt were superior to those from the nitrate salt in terms of homogeneity and crystallinity. A very small amount of AlN whiskers was obtained by calcining a mixture of an aluminum sulfate salt and carbon at 115$0^{\circ}C$ for 40 h, and the growth of the whiskers is well explained by the particle-to-particle self-assembly mechanism.

Synthesis of High Purity Alumina by Controlled Precipitation Method from Clay Minerals (I) Preparation of Aluminum Sulfate Hydrate and Alumina from Clay Minerals (점토 광물로부터 제어 침전법에 의한 고순도 알루미나의 합성 (I) 점토 광물로부터 수화 황산 알루미늄 및 알루미나의 제조)

  • No, Tae-Hwan;Lee, Heon-Su;Son, Myeong-Mo;Park, Hui-Chan
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.3-11
    • /
    • 1992
  • Aluminum sulfate hydrate was prepared using sulfuric acid from Ha-dong kaolin. The effects of calcination-temperature and calcination-time of kaolin, reaction-temperature and reaction-time, and sulfuric acid concentration on the formation of aluminum sulfate hydrate were investigated. The precipitation condition of aluminum sulfate hydrate from sulfuric acid solution was determined. Also, the products heat-treated at different temperatures have been investigated by X-ray diffraction, thermogravimetry, differential thermal analysis, Fourier transform infrared spectrophotometer, scanning electron microscopy, particle size distribution analysis and chemical analysis. In the optimum condition, the conversion of aluminum oxide in kaolin to aluminum sulfate hydrate was 60%. From the results of XRD, TG-DTA, and FT-IR, it is suggested that the aluminum sulfate hydrate is thermally decomposed as follows ; $Al_2(SO_4)_3{\cdot}18H_2O{\rightarrow}Al_2(SO_4)_3{\cdot}6H_2O{\rightarrow}Al_2(SO_4){\rightarrow}\;amorphous\;alumina{\rightarrow}{\gamma}-alumina{\rightarrow}{\delta}-alumina{\rightarrow}{\theta}-alumina{\rightarrow}{\alpha}-alumina$. The purity of alumina powder prepared by calcining aluminum sulfate hydrate at $1200^{\circ}C$ was 99.99 percent.

  • PDF