• Title/Summary/Keyword: Aluminum Sulfate

Search Result 210, Processing Time 0.035 seconds

Effects of Korean Red Ginseng marc with aluminum sulfate against pathogen populations in poultry litters

  • Chung, Tae Ho;Park, Chul;Choi, In Hag
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.414-417
    • /
    • 2015
  • Background: The aim of this study was to evaluate the effects of Korean Red Ginseng marc with aluminum sulfate as litter amendments on ammonia, soluble reactive phosphorus, and pathogen populations in poultry litters. Methods: Increasing levels of Korean Red Ginseng marc with aluminum sulfate were applied onto the surface of rice hull as a top-dress application; untreated rice hulls served as controls. Results: Treatment with Korean Red Ginseng marc with aluminum sulfate or aluminum sulfate alone resulted in lower litter pH (p < 0.05), as compared with that of the controls. There were some differences (p < 0.05) between treatments with Korean Red Ginseng marc with aluminum sulfate or aluminum sulfate alone and controls at 2-4 wk (not at 1 wk). Ammonia levels reduced on an average by 29%, 30%, and 32% for 10 g, 20 g Korean Red Ginseng marc with aluminum sulfate, and aluminum sulfate alone, respectively, as compared with controls at 4 wk. During the experiment, Korean Red Ginseng marc with aluminum sulfate or aluminum sulfate treatment had an effect (p < 0.05) on soluble reactive phosphorus content, as compared with the controls (not at 4 wk). A decrease in Salmonella enterica and Escherichia coli was observed (p < 0.05) in litter amended with both Korean Red Ginseng marc with aluminum sulfate and aluminum sulfate alone, as compared with the control, except at 1-3 wk for Salmonella enterica and 1 wk and 4 wk for Escherichia coli, respectively. Conclusion: The results showed that using Korean Red Ginseng marc with aluminum sulfate (blends), which act as acidifying agents by reducing the pH of the litter, was equally effective as aluminum sulfate in reducing the environmental impact.

Evaluation of Mixed Korean Red Ginseng Marc with Aluminum Sulfate on Gas Concentration and VFA in Poultry Litter in Comparison with Aluminum Sulfate: In Terms of Livestock and Environment Managements (깔짚에서 발생되는 가스와 휘발성지방산에 대한 황산알루미늄과 비교 시 혼합 홍삼박제제의 평가: 축산환경 경영관점에서)

  • Choi, In-Hag
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.549-554
    • /
    • 2015
  • This study was conducted to determine the effects of mixed Korean red ginseng marc with aluminum sulfate on gas concentration and volatile fatty acid (VFA) in poultry litter during 4 weeks in terms of livestock and environment managements. A total of 240 broiler chicks were randomly allocated to four treatments in four replications and 15 birds per replicate. The four treatments was mixed to rice hull under each pen at 0, 10 g or 20 g red ginseng marc + 90g aluminum sulfate, and 100g aluminum sulfate per kg poultry litter (rice hulls). Carbon dioxide, methane, acetic acid, and propionic acids were measured weekly. The results that could be available include: First, during the experimental period, carbon dioxide emissions were not remarkably different among treatments. Second, no differences were observed among treatments in methane emissions at 2 weeks through 4 weeks, but at 1 week, the reduction in methane emissions was in following order: 100 g aluminum sulfate > 20 g red ginseng marc + 90 g aluminum sulfate > 10 g red ginseng marc + 90 g aluminum sulfate > control. Third, in spite of statistically differences, treatment with 10 g or 20 g red ginseng marc + 90g aluminum sulfate, and 100g aluminum sulfate reduced acetic acid and propionic acid as a function of time, except acetic acid in aluminum sulfate treatment at 2 and 4 weeks. In conclusion, the results indicated that like aluminum sulfate, using 10 g or 20 g red ginseng marc with aluminum sulfate was effective in decreasing methane and propionic acid released from poultry litter.

Effects of Aluminum Feedings on Aluminum, Phospholipid and Catecholamine Concentrations in Old Rat Brain Tissue (알루미늄을 투여한 노령 흰쥐에 있어서 뇌조직의 인지질 구성과 신경전달 물질 농도에 미치는 영향)

  • Han, Sung-Hee;Choi, Deck-Ho
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.2
    • /
    • pp.236-243
    • /
    • 2009
  • This study was performed to investigate the effects of aluminum sulfate administration on the brain tissues of old rats, when given at different concentrations. The experiment attempted to further ascertain whether aluminum exposure cause Alzheimer's disease. Seventy-five aged Sprague-Dawley rats were divided into five groups; a control group, 2 ppm aluminum sulfate group, 20 ppm aluminum sulfate group, 40 ppm aluminum sulfate group, and 200 ppm aluminum sulfate group, and were kept on the respective diets for 12 weeks. In order to understand the influence of aluminum on the brain, serum aluminum concentrations, phospholipid composition, and catecholamine concentrations were compared between the aluminum-treated groups and the normal group. According to the results, serum aluminum was higher in the aluminum sulfate-treated groups than in the normal group. Within the cortex, catecholamine concentrationes were significantly increased but cerebellum and brainstem tissue were significantly decreased, in the aluminum sulfate-treated groups compared to the normal group. For phospholipid composition, phosphatidyl inositol was significantly increased wherase phosphatidyl choline, phosphatidyl ethanolamine, and phosphatidyl serine were significantly decreased in the aluminum sulfate-treated groups versus the normal group. Based on the data, increased aluminum consumption in experimental animals causes increased serum aluminum levels and catecholamine variation. These phenomena are very similar to conditions of Alzherimer's disease. Therfore, the results of this experiment further suggest that aluminum cause Alzherimer's disease, coinciding with reports that aluminum is a cause of neurofibrilly tangles in the brain.

Use of Chemical Blend Additives for Decreasing Pathogens in Poultry Litter (육계 깔짚내 유해성 병원균 감소를 위한 화학제재의 이용)

  • Chung, Tae-Ho
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.143-146
    • /
    • 2018
  • This study was conducted to evaluate the effect of chemical blend additives (a combination of ferrous sulfate and aluminum chloride) on decreasing pathogens in poultry litter. A total of 240 broiler chickens were assigned to 4 chemical treatments with 4 replicates of 15 chickens per pen. The four chemical blend additives were a control (no treatment), 25 g ferrous sulfate + 75 g aluminum chloride/kg poultry litter, 50 g ferrous sulfate + 100 g aluminum chloride/kg poultry litter and 100 g ferrous sulfate + 150 aluminum chloride/kg poultry litter. During the 6-wk experimental period, there were significant differences in both E.coli and Salmonella enterica for weeks 4 through 6, but not at weeks 1 and 3, respectively. Consequently, using chemical blend additives that serve as methods to control strict environmental regulations reduced pathogens in poultry litter.

Strength improvement and micro analysis of limestone-slag cement : role of aluminum sulfate (석회석슬래그 시멘트의 강도향상 및 미세분석 : 황산알루미늄의 역할)

  • Wang, Yi-Sheng;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.161-162
    • /
    • 2023
  • Limestone slag cement is a green and sustainable building material with huge market potential. However, its shortcoming of low early compressive strength needs to be improved. A method of using aluminum sulfate to improve the early strength of ternary mixed mortar was proposed, and its effect and optimal dosage were tested. Macroscopic properties such as mechanical properties and surface electrical resistivity were measured at different dosages (0%, 1%, 2%, 3%). The microstructure and products of the mixtures were tested in detail, including by scanning electron microscopy, thermogravimetric analysis, and X-ray diffraction. The results show aluminum sulfate enhances mechanical properties and significantly increases surface electrical resistivity. The 1% and 2% doses had no adverse effects on the 28-day mechanical properties, while the 3% dose reduced the 28-day strength. Considering the changes in mechanical properties and surface electrical resistivity, 1% aluminum sulfate is the optimal dosage.

  • PDF

Effects of Salts on the Formation of $\alpha$-Calcium Sulfate Hemihydrated from by-Product Gypsum of Phosphoric Acid Process at Hydrothermal Condition (가압수열 수용액중에서 인산석고로부터 $\alpha$형 반수석고의 생성에 미치는 염류의 영향)

  • 이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.343-348
    • /
    • 1987
  • The effects of salts such as aluminum sulfate as inorganic salt(2-4%), and sodium salts of citrate, tartrate, succinate, potassium tartrate and gelatin as organic salts(0.1%) on the formation of ${\alpha}$-calcium sulfate hemihydrate from by-product gypsum of phosphoric acid process under hydrothermal condition at 123$^{\circ}C$ and 133$^{\circ}C$ were investigated. Aluminum sulfate solution exhibited the catalystic effected on the crystallization of ${\alpha}$-calcium sulfate hemihydrate of which was assumed in the prismatic form, and organic salts solution exhibited little effect on the catalystic action to the crystallization, than inorganic salts. In the acidic solution with sulfuric acid(pH=2), needle like crystal of calcium sulfate hemihydrate was obtained. Hydrothermal process with aluminum sulfate solution also showed certain amounts of impurity removal such as phosphorus penataoxide from calcium sulfate hemihydrate.

  • PDF

The Effect of Turbidity and Alkalinity on the Regidual Aluminum Concentration (탁도(濁度) 및 알카리도(度)가 잔류(殘留)알루미늄 농도(濃度)에 미치는 영향(影響))

  • Choi, Suingil;Lee, Changsook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.88-98
    • /
    • 1995
  • Several kinds of coagulants such as aluminum sulfate, PAC, PASS are being used to treat drinking water resulting in residual aluminum ions in the water. Recently, it has been reported that high intake of aluminum ion may cause neurological dieseases such as Alzheimer's diesease and presenile dementia. Because of the possible adverse effect, WHO and EEC recommand to regulate residual aluminum. The autorities in Korea also has plan of regulating residual alunimum from 1995. But there is not enough information about the range of residual aluminum ion concentration when the aluminum sulfate, PAC or PASS has been used as a coagulant. Therefore the study has been conducted to find out the range of residual aluminum ion concentration after using aluminum sulfate, PAC, and PASS. Furthermore the effect of turbidity and alkalinity have been investigated. The experimental results are summarized as; 1. Most of the residual aluminum ion concentrations were within $10^{-6}$ and $10^{-5}mole/l$. Three coagulants have not showed any considerable difference in the residual aluminum concentration up to 50 NTU. However PAC has showed the least residual aluminum in high turbidity water over 100 NTU. 2. The low alkalinity water having 25mg/l as $CaCO_3$ has showed less residual aluminum than the water having 50mg/l alkalinity. However, the difference was not significcant. 3. Even the lowest residual aluminum concentration was over 0.05mg/l. Therefore the process to reduce residual aluminum would be necessary in water treatment plants.

  • PDF

Effects of Green Tea Extract Diet on the Phospholipid Content of Aluminum-Induced-Damaged Cerebral Tissue of Old Rats (노령 흰쥐의 대뇌 조직에서 알루미늄 투여에 대한 녹차 추출물이 인지질 함량에 미치는 효과)

  • Jung, Young-Hee;Han, Sung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.2
    • /
    • pp.232-239
    • /
    • 2010
  • This study was designed to investigate the effects of green tea extract on aluminum-induced damage to phospholipid content in old rat cerebral tissue. The aim of this study was to investigate the possibility that aluminum is the cause of Alzheimer's disease. Forty Sprague-Dawley old male rats weighing 350$\pm$10 g were divided into four groups, consisting of a control group (CON), 40 ppm aluminum sulfate group (Al-40), green tea water extract group (GTWE), and 40 ppm aluminum sulfate and green tea water extract groups (Al-40+GTWE) and kept on their respective diets for 12 weeks. In order to discover the influence of aluminum on cerebral tissue of old male rats, the serum aluminum concentration and phospholipid composition were compared between the aluminum-treated group and the normal group. The results showed that the serum aluminum concentration was higher in the aluminum sulfate-treated group than in the normal group. The cerebral tissue phospholipid concentration decreased significantly in the aluminum sulfate treated group as compared to the normal group. The results of this experiment show that increase of aluminum concentration in experimental animals causes the rise of serum aluminum and phospholipid concentrations, phenomena that are very similar to those shown in Alzheimer's disease., The results of this experiment, together with reports that aluminum is a cause of neurofibrillary tangles in cerebral tissue, therefore demonstrate the possibility that aluminum is the cause of Alzheimer's disease. Green tea water extract is also shown to be an effective therapeutic candidate for the treatment of Alzheimer's disease.

Effects of Inorganic Coagulants on Sizing and Contamination in Newsprint Mill (무기 응결제가 신문용지의 사이즈도와 공정오염에 미치는 영향)

  • Lee, Tai Ju;Seo, Jin Ho;Lee, Kwang Seob;Jeong, Sung Hyun;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.3
    • /
    • pp.40-46
    • /
    • 2015
  • For some Korean newsprint mill, addition level of aluminum sulfate has been reduced because sulfur from aluminum sulfate has detrimental effect on the efficiency of anaerobic water treatment. At this moment, an unexpected decrease in sizing degree of TMP mixed newspaper was occurred. The phenomena means that hydrophobic substance usually originated from TMP cannot be fixed on the paper. This study focused on effect of alum and PAC on sizing of paper and contamination. Also, substitutability of PAC was discussed as a possible alternatives of aluminum sulfate under anaerobic condition of water treatment. Evaluation of sizing degree and pitch deposit potential were performed at the varied addition level of PAC and aluminum sulfate. Hydrophobic substance mainly derived from TMP could be fixed on the surface of fiber by PAC. Fines retention was not changed by replacing aluminum sulfate with PAC. Additionally, fixing of hydrophobic substance without excessive agglomeration can be enhanced by PAC with low molecular weight. Consequently, sizing degree of newspaper and contamination of recycling process of ONP can be controlled by low molecular weighted PAC.