• Title/Summary/Keyword: Aluminum Oxide

Search Result 904, Processing Time 0.024 seconds

Effects of pH and Plating Bath Temperature on Formation of Eco-Friendly Electroless Ni-P Plating Film on Aluminum (알루미늄 위 친환경적 무전해 Ni-P 도금막 형성에 pH와 도금조 온도가 미치는 영향)

  • Gee, Hyun-Bae;Bin, Jung-Su;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.361-368
    • /
    • 2022
  • The overall process, from the pre-treatment of aluminum substrates to the eco-friendly neutral electroless Ni-P plating process, was observed, compared, and analysed. To remove the surface oxide layer on the aluminum substrate and aid Ni-P plating, a zincation process was carried out. After the second zincation treatment, it was confirmed that a mostly uniform Zn layer was formed and the surface oxide of aluminum was also removed. The Ni-P electroless plating films were formed on the secondary zincated aluminum substrate using electroless plating solutions of pH 4.5 and neutral pH 7.0, respectively, while changing the plating bath temperature. When a neutral pH7.0 electroless solution was used, the Ni-P plating layer was uniformly formed even at the plating bath temperature of 50 ℃, and the plating speed was remarkably increased as the bath temperature was increased. On the other hand, when a pH 4.5 Ni-P electroless solution was used, a Ni-P plating film was not formed at a plating bath temperature of 50 ℃, and the plating speed was very slow compared to pH 7.0, although plating speed increased with increasing bath temperature. In the P contents, the P concentration of the neutral pH 7.0 Ni-P electroless plating layer was reduced by ~ 42.3 % compared to pH 4.5. Structurally, all of the Ni-P electroless plating layers formed in the pH 4.5 solution and the neutral (pH 7.0) solution had an amorphous crystal structure, as a Ni-P compound, regardless of the plating bath temperature.

Size, Shape, and Crystal Structure-dependent Toxicity of Major Metal Oxide Particles Generated as Byproducts in Semiconductor Fabrication Facility (반도체 가공 작업환경에서 부산물로 발생되는 주요 금속산화물의 입자 크기, 형상, 결정구조에 따른 독성 고찰)

  • Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.119-138
    • /
    • 2016
  • Objectives: The purpose of this study is to review size, shape, and crystal structure-dependent toxicity of major metal oxide particles such as silicon dioxide, tungsten trioxide, aluminum oxide, and titanium dioxide as byproducts generated in semiconductor fabrication facility. Methods: To review the toxicity of major metal oxide particles, we used various reported research and review papers. The papers were searched by using websites such as Google Scholar and PubMed. Keyword search terms included '$SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$) toxicity', 'health effects $SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$). Additional papers were identified in references cited in the searched papers. Results: In various cell lines and organs of human and animals, cytotoxicity, genotoxicity, hepatoxicity, fetotoxicity, neurotoxicity, and histopathological changes were induced by silicon dioxide, tungsten trioxide, aluminium oxide, and titanium dioxide particles. Differences in toxicity were dependent on the cell lines, organs, doses, as well as the chemical composition, size, surface area, shape, and crystal structure of the particles. However, the doses used in the reported papers were higher than the possible exposure level in general work environment. Oxidative stress induced by the metal oxide particles plays a significant role in the expression of toxicity. Conclusions: The results cannot guarantee human toxicity of the metal oxide particles, because there is still a lack of available information about health effects on humans. In addition, toxicological studies under the exposure conditions in the actual work environment are needed.

Effect of sputtering parameters and targets on properties of ZnO:Al thin films prepared by reactive DC magnetron sputtering (직류 반응성 sputtering법으로 제막된 ZnO:Al 박막의 물성에 미치는 증착조건 및 타겟의 영향)

  • 유병석;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.592-598
    • /
    • 1998
  • AZO(Aluminum doped Zinc Oxide) thin films were fabricated by reactive DC magnetron sputtering method using zinc metal target (Al 2%) and zinc oxide target ($Al_2O_3\;2%$) respectively. The intermediate condition with optimum transmittance and conductivity was obtained by controlling the sputtering parameters. Oxygen gas ratio for this condition was $0.5{\times}10^{-2}~1.0{\times}10^{-2}$ in oxide target and. In case of metal target, this optimum oxygen gas ratio at the applied power of 0.6 kW and 1.0 kW was 0.215~0.227 and 0.305~0.315, respectively. The resistivity of AZO film deposited was obtained $1.2~1.4{\times}10^{-3} {\Omega}{\cdot}$cm as deposited state regardless of target species.

  • PDF

Fabrication of a Transparent Electrode for a Flexible Organic Solar Cell in Atomic Layer Deposition (ALD 공정을 이용한 플렉시블 유기태양전지용 투명전극 형성)

  • Song, Gen-Soo;Kim, Hyoung-Tae;Yoo, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.121.2-121.2
    • /
    • 2011
  • Aluminum-doped Zinc Oxide (AZO) is considered as an excellent candidate to replace Indium Tin Oxide (ITO), which is widely used as transparent conductive oxide (TCO) for electronic devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and organic solar cells (OSCs). In the present study, AZO thin film was applied to the transparent electrode of a channel-shaped flexible organic solar cell using a low-temperature selective-area atomic layer deposition (ALD) process. AZO thin films were deposited on Poly-Ethylene-Naphthalate (PEN) substrates with Di-Ethyl-Zinc (DEZ) and Tri-Methyl-Aluminum (TMA) as precursors and $H_2O$ as an oxidant for the atomic layer deposition at the deposition temperature of $130^{\circ}C$. The pulse time of TMA, DEZ and $H_2O$, and purge time were 0.1 second and 20 second, respectively. The electrical and optical properties of the AZO films were characterized as a function of film thickness. The 300 nm-thick AZO film grown on a PEN substrate exhibited sheet resistance of $87{\Omega}$/square and optical transmittance of 84.3% at a wavelength between 400 and 800 nm.

  • PDF

A Level Shifter Using Aluminum-Doped Zinc Tin Oxide Thin Film Transistors with Negative Threshold Voltages

  • Hwang, Tong-Hun;Yang, Ik-Seok;Kim, Kang-Nam;Cho, Doo-Hee;KoPark, Sang-Hee;Hwang, Chi-Sun;Byun, Chun-Won;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.464-465
    • /
    • 2009
  • A new level shifter using n-channel aluminum-doped zinc tin oxide (AZTO) thin film transistors (TFTs) was proposed to integrate driving circuits on qVGA panels for mobile display applications. The circuit used positive feedback loop to overcome limitations of circuits designed with oxide TFTs which is depletion mode n-channel TFTs. The measured results shows that the proposed circuit shifts 10 V input voltage to 20 V output voltage and its power consumption is 0.46 mW when the supply voltage is 20 V and the operating frequency is 10 kHz.

  • PDF

Effects of Metal Anion Complexes in Electrolyte on the Properties of Anodic Oxide Films on ADC12 Al Alloy

  • Yoo, Hyeonseok;Lee, Chulho;Oh, Kiseok;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.130-134
    • /
    • 2016
  • The anodization of ADC12 aluminum alloy was investigated in the metal anionic acid media. Anodic oxide films containing foreign elements were formed on ADC12 Al alloy by anodization in the anion complex solution. Furthermore, the rough surface and cracks were considerably smoothened by the deposit of metal anions. When the size of metal anion was small, relatively large amount of metal anions was loaded in anodic films. Existence of $MoO_3$, $TiO_2$ and MgO was confirmed by XPS. According to the results of Tafel analysis, Mo oxide represented the most noble anti-corrosion potential due to $MoS_2$ formation. Corrosion current densities were generally higher than that of pristine anodic oxide without anion complexes.

Optical properties of Al doped ZnO Nanofibers Prepared by electrospinning (전기방사를 이용한 Al이 첨가된 ZnO 나노섬유의 제조 및 광학 특성평가)

  • Song, Chan-Geun;Yoon, Jong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.205-209
    • /
    • 2011
  • Zinc oxide has semi-conductivity and super conductivity characteristics. It can be used optically and is applied on many areas such as gas sensor, solar cell and optical waveguide. In this paper, to improve optical characteristics of ZnO, aluminum was added on zinc oxide. Zinc oxide and aluminum zinc oxide was fabricated as nano fiber form. ZnO solution was created by mixing poly vinyl pyrrolidone, ethyl alcohol, and zinc acetate. An Al doped ZnO was created by adding aluminum solution to ZnO sol. By applying these sols on electro spinning method, nano fibers were fabricated. These fibers are heat treated at 300, 500, and $700^{\circ}C$ degrees and were analyzed with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to examine the nano structures. TGA and DSC measurement was also used to measure the change of mass and calorie upon temperature change. The absorbance of ZnO and Al-doped ZnO was carried out by UV-vis measurement.