• Title/Summary/Keyword: Aluminum Flange

Search Result 18, Processing Time 0.021 seconds

A Numerical Study on The Three Point Bending Behavior of Aluminum Foam Filled Stainless Steel Tube (알루미늄 폼으로 충진된 스테인레스 관의 3 점 굽힘 특성에 관한 수치적 연구)

  • Ha, San;Kim, Am-Kee;Cheon, Seong-Sik;Lee, Chang-Hun;Lee, Hyo-Jin;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.388-393
    • /
    • 2004
  • A comprehensive numerical study on the three point bending behavior of Aluminum foam-filled stainless steel tube has been performed. Aluminium alloy foams with various densities were produced and their mechanical properites were evaluated. Finite element(FE) analysis of three point bending test was performed to evaluate bending behavior of foam filled cylindrical structures. Results showed that foam filling offered remarkable increase of bending resistance and enhanced the crashworthiness of the structure. It turned out to prevent the inward fold formation at the compression flange, resulted into the multiple propagating folds and increased the load carrying capacity.

  • PDF

Bending Behaviors of Stainless Steel Tube Filled with Al5Si4Cu4Mg Closed Cell Aluminum Alloy Foam (발포 Al5Si4Cu4Mg 알루미늄 합금이 충진된 304 스테인리스강 원통의 굽힘저항 특성)

  • Kim, Am-Kee;Lee, Hyo-Jin;Cho, Seong-Seock
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1686-1694
    • /
    • 2003
  • The foam-filled tube beams can be used for the front rail and firewall structures to absorb impact energy during frontal or side collision of vehicles. In the case of side collision where bending is involved in the crushing mechanism, the foam filler would be effective in maintaining progressive crushing of the thin-walled structures so that much impact energy could be absorbed. In this study, bending behaviors of the closed-cell-aluminum-alloy-foam-filled stainless steel tube were investigated. The various foam-filled specimens including piecewise fillers were prepared and tested. The aluminum-alloy-foam filling offered the significant increase of bending resistance. Their suppression of the inward fold formation at the compression flange as well as the multiple propagating folds led to the increase of load carrying capacity of specimens. Moreover, the piecewise foams would provide the easier way to fill the thin-walled shell structures without the drawback of strength.

The characteristic of low pressure casting AZ91D Magnesium alloy wheel (저압주조방식에 의한 AZ91D 마그네슘 휠 특성)

  • Kim, Kwang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4963-4967
    • /
    • 2012
  • In this study, 18-inch wheels, magnesium alloy AZ91D was developed and we compared overseas go on sale magnesium wheels and same specifications of the aluminum wheels mechanical properties. Prototype 18-inch magnesium wheels by a low-pressure casting method to achieve the same specifications of aluminum wheels and reduced 26% of the weight, the new edition of magnesium wheels compared to the same level of elongation, tensile strength, hardness. Casting and heat treatment process to improve future need to improve the yield strength is expected.

A Study on the Analysis and Improvement of Forming Process of a No-Bridge Blank (No-Bridge Blank의 공정 해석 및 성형 공정 개선에 관한 연구)

  • Lee Y. W.;Cho K. Z.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.85-88
    • /
    • 2001
  • Deep drawing process, one of sheet metal forming methods, is used widely. Circular or square shape blanks are currently studied mainly. Especially, circular blank for coating case of chip condenser remains bridges when it is made out of aluminum coil. The bridge reduces Material-withdrawal-rate of aluminum coil to $60\%$. This paper proposes a no-bridge blank instead of circular blank. To get the different values of two cases, comparison circular blank with no-bridge blank is accomplished in the point of thickness strain in the vicinity of flange. In order to find optimal condition in new proposed blank, several process variables - those are blank holder shape, die shape radii, punch shape radii and blank holding force - are changed.

  • PDF

A Study on the Process Design for Forming of Control Arm (컨트롤 암 성형을 위한 공정설계에 대한 연구)

  • Lee, O.Y.;Kim, K.S.;Yeo, H.T.;Chun, S.Y.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.365-367
    • /
    • 2009
  • The use of aluminum alloy has been interested in the automotive industry, because of its specific strength. And hollow extruded billet is more attractive than solid extruded billet but its forming application has to be precisely processed to satisfy the product quality. In this research, the process design of forming of control arm for the vehicle was studied by press bending process with hollow extruded billet. The middle protrusion portions and the middle cylindrical cup were processed separately according to the analysis. It was concluded that a useful sequence is to bend the side flange and the middle protrusion portions firstly, and then to form the middle cylindrical cup.

  • PDF

Texture Evolution in Aluminum Alloy Sheets during Deep Drawing Process (디프드로잉에 의한 알루미늄합금판재의 집합조직 발달에 관한 연구)

  • 최시훈;조재형;정관수;오규환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.140-147
    • /
    • 1998
  • The texture evolution by deep drawing was investigated and the lattice rotation rate was predicted using rate sensitive model with full constraints boundary conditions. The calculated textures show different behaviors with the amount of the flange deformation and initial crystal orientations. Among the crystal orientations located parallel to RD, the crystal orientations around the D component rotated toward the Cu component, the crystal orientations along the ${\alpha}$ fiber rotated toward the {110}<001> and {110}<111> components during deep drawing. In the case of the part parallel to 45$^{\circ}$ with respect to RD, the crystal orientations around the D component rotated about ND and the crystal orientations along the ${\alpha}$ fiber also rotated toward the (110)[23] and (110)[27] components about ND. In the part parallel to TD, the crystal orientations around the D component rotated toward the Rotated Cube and the crystal orientations along the ${\alpha}$ fiber rotated toward the {110}<113> component.

An Experimental Study on the Failure of a Novel Composite Sandwich Structure (새로운 형상의 복합재 샌드위치 체결부 구조의 파손거동 연구)

  • Kwak, Byeong-Su;Kim, Hong-Il;Dong, Seung-Jin;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.209-215
    • /
    • 2016
  • The failure of composite sandwich structures with thickness and material variation was studied. The main body of the structure is sandwich plate made of the carbon composite face and Aluminum honeycomb core. It is connected with composite laminated flange without core through transition region of tapered sandwich panel with foam core. Tension and compression tests were conducted for the total of 6 panels, 3 for each. Test results showed that the panels under compression are vulnerable to the face failure along the material discontinuity line between two different cores. However the failure load of which panel does not show such failure can carry 16% more load and fails in honeycomb core and face debonding. For the tensile load, the extensive delamination failure was observed at the corner radius which connects the panel and the flange. The average failure load for compression is about 7 times the tensile failure load. Accordingly, these sandwich structures should be applied to the components that endure the compressive loadings.

UHV Materials (초고진공계재료)

  • 박동수
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.24-24
    • /
    • 1998
  • 반도체장비를 포함하는 초고진공장비의 園훌化가 급속히 그리고 절실히 요구되고 있는 것이 현실정이다. 當面해서 실현할 국산진공장비의 대상은 廣範圍하다. 즉, 각종 진공 pump ( (rotary, dry, diffusion, cryo, ion, turbo melecular pump), 진공 chamber, 진공 line, gate valve 를 위 시 한 진공 V머ve, flange, gasket, fl않d야lU, mainpulater 퉁 진공 部品이 다. 진공계 의 핵심 은 適切하고 優良한 진공재료의 선태파 사용이다. 진공장비는 사용자가 원하는 진공도를 원하 는 시간 동안 륨空度를 유지해 주어야 한다. 진공재료 선태의 기준사항은:(1) 기체의 透過성 (2) 薰했훌 (3) 혔體放出특성 - -outgassing과 degassing- (4) 機械的 량훌度 (5) 온도 의존성 (6) 化學톡성 (7) 加I성 및 鎔接 성 (8) 課電특성 (9) 磁氣특성 (10) 高速함子 및 放射線 특성 (11) 經濟성 및 調達생 둥이 다. 우량한 초고진공계재료는 풍부하게 개발되어 왔고, 또 新材料들이 개발되고 있다. 여기에서는 주로 초고진공 내지는 극고진공계의 構造材料, 機能材料, 部品材料 일반파 몇가지 신재료의 특 성에 관해서 記述한다. M Mild SteeHSAE, 1112, 1010, 1020, 1022, etc)., S Stainless SteeHAlSI, 304, 304L, 310, 316, 321, 347): 구조재료, chamber, fl하1ges A Aluminum과 Alloys (1060, 1100, 2014, 4032, 6(뻐1): 구조재료, chamber, flanges, gaskets A AI, Al 떠loy는 SS에 代替하는 역 할올 시 작하고 있다. C Copper, Copper Alloys(C11$\alpha$)0, C26800, C61400, Cl7200): 내장인자, gasket, cryopanel, tubing T Titanium, Ziriconium, Haf띠um 및 Alloys: 특히 Ti은 10n pump 용 getter material 이 외 에 U UHV,XHV용 chamber계로서 관심올 끌고 있다. N Nickel, Nickel Alloys (200, 204, 211, monel, nichrome): 부식 방지 , 전자장치 , 자기 장치 귀 금속(Ag, Au, Pt, Pd, Rh, Ir, Os, Ru): 보조부품, gasket, filament, coating, thermocouple, 접 합부위 T TiC, SiC, zrC, HfC, TaC 둥의 탄화물과, BN, TiN, AlN 동의 질화물, 붕화물이 둥장하고 었 다. 유리: Soda Lime, Borosilicate, Potash Soda Lead: View Port, Chamber envelope C Ceramics: AlZ03, BeO, MgO, zrOz, SiOz, MgOzSiOz, 3Alz032SiOz, Z$textsc{k}$hSiOz S상N4: e electrical, thermal insulators, crucibles, boats, single crystals, sepctr려 windows 저자는 최근 저자들이 발견한 Zr-Ti-Cu-Ni-Be amorphous alloys coated cham뾰r가 radiation p proof로 이용될 수 있는 사실을 점검하고 었다 .. Z.Y. Hua 들은 Cs3Sb를 새로운 photocathode 재료로 보고하고 있다.

  • PDF