• Title/Summary/Keyword: Aluminum Alloy Sheets

Search Result 126, Processing Time 0.024 seconds

Development of finite element analysis program for aluminum alloy sheets (알루미늄 합금 판재 성형성 예측을 위한 유한요소해석 프로그램 개발)

  • Kim S. T.;Moon M. S.;Chung W. J.;Yoon J. W.;Kim Y. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.291-294
    • /
    • 2005
  • Recently, the usage of aluminum alloy is rapidly increasing in automobile industry to achieve weight reduction for fuel efficiency. However, design of forming process of aluminum is more difficult than steel because of poor formability and severe springback. Since applications of finite element analysis for the design of sheet metal forming process are actively performed, it is required to conduct proper consideration of aluminum material behavior. In this study, a plane stress yield function Yld2000(Yoon et al., 2000), proven to describe well the anisotropic behavior of aluminum alloy, is implemented for FE analysis. One element test is considered to verify the validity of implementation of Yld2000 model. In addition, cylindrical cup drawing test is performed to verify earing shape of a drawn cup.

  • PDF

Texture and Formability Development of Non-lubrication Rolled Al Alloy Sheet (무윤활 압연한 알루미늄 합금의 집합조직과 성형성)

  • Akramov, Saidmurod;Kim, In-Soo
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Formability and other mechanical properties of sheet metals are strongly dependent on the texture. It was studied to improve the formability of the Al alloy(AA3003) sheets which were rolled under the non-lubrication condition and subsequent heat treated. In the non-lubrication rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios were investigated in this study. Non-lubrication rolled Al sheets showed a fine grain size and after subsequent heat treated specimens showed that the $\beta$-fiber texture component was increased. The plastic strain ratios of the non-lubrication rolled and subsequent heat treated Al alloy sheets were about two times higher than those of the original Al sheets. These could be related to the formation of $\beta$-fiber texture components through the non-lubrication rolling and subsequent heat treatment in Al sheet.

Experimental Formability Investigation for FSW Sheets with Respect to Base Material's Directional Combination (모재의 방향성에 따른 마찰교반용접 판재의 성형성에 관한 실험적 연구)

  • Kim, Dae-Yong;Lee, Won-Oh;Kim, June-Hyung;Kim, Chong-Min;Chung, Kwan-Soo
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.73-79
    • /
    • 2009
  • In order to investigate the formability of friction stir welded(FSW) tailor welded blanks(TWB) with respect to the base material's directional combination, aluminum alloy AA6111-T4 sheets were welded with three different conjoining types: RD-RD, TD-RD and TD-TD. Here, RD and TD represent rolling and transverse directions, respectively. For experimental formability study, three tests with gradual complexity were performed: the simple tension test with various weld line directions for uni-axial elongation, the hemisphere dome stretching test for biaxial stretching and the cylindrical cup deep drawing test. As a result, all three forming tests showed that RD-RD type samples exhibited the best formability, while TD-TD type sheets showed the least formability performance.

Texture of Asymmetrically Rolled AA 1050 Aluminum alloy (비대칭 압연한 AA 1050 합금의 조직 변화)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.326-327
    • /
    • 2007
  • A study on the texture and the formability after asymmetric rolled and subsequent heat-treated AA 1050 aluminum alloy sheets have been carried out. The specimens after the asymmetric rolling showed a very fine grain size, a decrease of <100>//ND, and an increase of <111>//ND textures. The change of plastic strain ratios has been investigated and it was found that they were higher than those of the initial Al sheet.

  • PDF

Texture of Frictionally Rolled AA 1050 Aluminum alloy (마찰 압연한 AA 1050 합금의 조직 변화)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.328-329
    • /
    • 2007
  • A study on the texture and the formability after frictional rolled and subsequent heat-treated AA 1050 aluminum alloy sheets have been carried out. The specimens after the frictional rolling showed a very fine grain size, a decrease of <100>//ND, and an increase of <111>//ND textures. The change of plastic strain ratios has been investigated and it was found that they were higher than those of the initial Al sheet.

  • PDF

Texture of Asymmetrically Rolled AA 3003 Aluminum alloy (비대칭 압연한 AA 3003 합금의 조직 변화)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.332-333
    • /
    • 2007
  • The effect of asymmetric rolling on the recrystallization texture of an AA 3003 Aluminum alloy was investigated by X-ray diffraction. It was found that the texture of asymmetrically rolled sheets prior to subsequent heat treatment promoted the formation of the <111>//ND textures, and remained after heat treatment at $275^{\circ}C$ during 20 min in salt bath condition.

  • PDF

Study on Multi-stage Hot Forming of A6061 Aluminum Alloy (A6061 알루미늄 합금의 다단 열간성형에 관한 연구)

  • R. H. Kim;M. H. Oh;Y. S. Jeong;S. M. Son;M. Y. Lee;J. H. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.161-168
    • /
    • 2024
  • Aluminum alloy sheets, compared to conventional steel sheets, face challenges in press forming due to their lower elongation. To enhance their formability, extensive research has focused on forming technologies at elevated temperatures, specifically warm forming at around 300℃ and hot forming at approximately 500℃. This study proposes that the formability of aluminum alloy sheets can be significantly enhanced using a multi-stage hot forming technique. The research also investigates whether the strength of the A6061 aluminum alloy, known for its precipitation hardening, can be maintained when formed below the precipitate solid solution temperature. In the experiments, the A6061-T6 sheet underwent heating and rapid cooling between 250 and 500℃. The mechanical properties were evaluated at each stage of the process. The findings revealed that when the initial heat treatment was below 350℃, the strength of the material remained unchanged. However, at temperatures above 400℃, there was a noticeable decrease in strength coupled with an increase in elongation. Conversely, when the secondary heat treatment was conducted at temperatures of 350℃ or lower, the strength remained comparable to that of the initial heat treated material. However, at higher temperatures, a reduction in strength and an increase in elongation were observed.

Effect of Welding Current Type on Weldability in Spot Welding of Aluminum Alloy (알루미늄 합금의 점용접에서 용접전류 형태가 용접성에 미치는 영향)

  • 한용섭
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Spot welding is one of the important welding processes for the construction of thin metal sheet. Because of low investment cost, alternating welding current is widely applied for power source. Direct current type could be, however, recommened for high quality weldment. In this study, the effect of welding current type on the weldability and the electrode life in spot welding of aluminium alloy were investigated. Various welding tests were done by using three phase direct and alternating welding current, respectively. In spite of high variation of welding force, weld quality and electrode life with alternating welding current were shown better results than those with direct current for 2mm thick alumininum alloy sheets. This was due to excessive erosion of the positive electrode in direct welding current compared with the negative one. On the contrary to 2mm sheets, the welding parameters of alternating current for 1mm sheets must be carefully selected.

  • PDF

Effect of Tool Shape and Insertion Depth on Joining Properties in Friction Stir Spot Welding of Aluminum Alloy/high-strength Steel Sheets (알루미늄 합금/고장력 강판 겹치기 마찰교반점용접에서 공구 형상과 삽입 깊이에 따른 접합 특성)

  • Su-Ho An;Young-Keun Jeong
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2024
  • Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.

Comparison of Hybrid Hemming and Roller Hemming Using Finite Element Analysis (유한요소해석을 이용한 하이브리드 헤밍과 롤러 헤밍의 비교)

  • Jo, D.S.;Oh, M.H.;Kim, R.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.119-124
    • /
    • 2021
  • In this study, the hybrid and roller hemming processes of aluminum alloy sheets were compared using the finite element analysis. The aluminum alloy 6014-T4 sheet with a thickness of 1 mm was used for the hemming process. The mechanical properties of the aluminum sheet obtained through a uniaxial tensile test were used for the simulation. The finite element analysis of hybrid and roller hemming was performed using a commercial software (ABAQUS) by the use of the mechanical properties. The finite element simulation results showed that the hybrid hemming holds an advantage over the roller hemming in terms of the dimensional accuracy