• 제목/요약/키워드: Aluminum 5182

검색결과 16건 처리시간 0.019초

SERRATION MECHANISM OF AA5182/POLYPROPYLENE/AA5182 SANDWICH SHEETS

  • Kim, K.J.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.485-492
    • /
    • 2006
  • The AA5182/polypropylene/AA5182(AA/PP/AA) sandwich sheets have been developed for application to automotive body panels in future lightweight vehicles with significant weight reduction. It has been reported that the AA5182 aluminum sheet shows $L\"{u}ders$ band because of dissolved Mg atoms that cause fabrication process problem, especially surface roughness. The examination of serration behavior has been made after the tensile deformation of the AA/PP/AA sandwich sheets as well as that of the AA5182 aluminum skins at room and elevated temperatures. All sandwich sheets and the AA5182 aluminum skin showed serration behavior on their flow curves. However, the magnitude of serration was significantly diminished in the sandwich sheet with high volume fraction of the polypropylene core. According to the results of the analysis of the surface roughness following the tensile test, $L\"{u}ders$ band depth of the sandwich sheet evidently showed lower than that of the AA5182 aluminum skin. The strain rate sensitivity, m-value, of the AA5182 aluminum skin was -0.006. By attaching these skins to the polypropylene core, which has relatively large positive value of 0.050, m-value of the sandwich sheets changed to the positive value. The serration mechanism of the sandwich sheets was quantitatively investigated in the point of the effect on polypropylene thickness variation, that on the strain rate sensitivity and that on the localized stress state.

알루미늄5182/폴리프로필렌/알루미늄5182 샌드위치 판재의 톱니모양 거동 (Serration Behavior of AA5l82/Polypropylene/AA5182 Sandwich Sheets)

  • 김기주;신광선
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.192-203
    • /
    • 2004
  • The AA5182/polypropylene/AA5182 (AA/PP/AA) sandwich sheets have been developed for the application for automotive body panels in the future light weight vehicles with significant weight reduction. It has been reported that the 5182 aluminum sheet shows Luders band because of dissolved Mg atoms that causes fabrication process problem, especially surface roughness. The examination of serration behavior has been made after the tensile deformation of the AA/PP/AA sandwich sheets as well as that of the 5182 aluminum skin at room and elevated temperatures. All sandwich sheets and the 5182 aluminum skin showed serration phenomena on their flow curves. However, the magnitude of the serration was significantly diminished in the sandwich sheet with the high volume fraction of the polypropylene core. According to the results of the surface roughness analysis after the tensile test, the sandwich sheet evidently showed lower Luders band depth than the 5182 aluminum skin. Strain rate sensitivity, m-value, of the 5182 aluminum skin was -0.006. By attaching this skin with polypropylene core which has relatively large positive value, 0.050, m-value of the sandwich sheets was changed to the positive value. The serration reduction of the sandwich sheets was quantitatively investigated in the point of the effect on the polypropylene core thickness variation, that on the strain rate sensitivity. It was found that the serration reduction degree from the experimental results of the sandwich sheet was higher than that from the calculated values by the rule of mixture based on volume fraction of the skins and the core.

PLASTIC STRAIN RATIOS AND PLANAR ANIOSOTROPY OF AA5182/POLYPROPYLENE/AA5182 SANDWICH SHEETS

  • KIM K. J.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.259-268
    • /
    • 2005
  • In order to analyze the sheet drawability, the measurement of the plastic strain ratio was carried out for the 5182 aluminum alloy sheets in which were cold rolled without lubrication and subsequent recrystallization annealing. The average plastic strain ratio of the 5182 aluminum sheets was 1.50. It was considered that the higher plastic strain ratio was resulted from the ND//<111> component evolved during rolling and maintained during annealing. The AA5182/polypropylene/AA5182 (AA/PP/AA) sandwich sheets of the 5182 aluminum alloy skin sheet and the polypropylene core sheet with high formability have been developed for application for automotive body panels in future light weight vehicles with significant weight reduction. The AA/PP/AA sandwich sheets were fabricated by the adhesion of the core sheet and the upper and lower skin sheets. The AA/PP/AA sandwich sheet had high plastic strain ratio (1.58), however, the planar anisotropy of the sandwich sheet was little changed after fabrication. The optimum combination of directionality of the upper and lower skin sheets having high plastic strain ratio and low planar anisotropy was calculated theoretically and an advanced process for producing the sandwich sheets with high plastic strain ratio was proposed. The developed sandwich sheets have a high average plastic strain ratio of 1.55 and a low planar anisotropy of 0.17, which was improved more by 3.2 times than that of 5182 aluminum single sheet.

AA5182판재와 AA5182/PP/AA5182 샌드위치 판재의 성형성 평가 (Formability for AA5182 sheet and AA5182/PP/AA5182 sandwich sheet)

  • 김대용;김기주;정관수;신광선;유동진
    • Composites Research
    • /
    • 제13권2호
    • /
    • pp.81-90
    • /
    • 2000
  • 자동차의 경량화를 위해서 AA5182/Polypropylene/AA5182 형태의 알루미늄 합금과 폴리프로필렌으로 구성된 샌드위치 판재가 개발되었다. 샌드위치 판재의 성형성을 평가하기 위해서 0.2mm 두께의 AA5182 판재와 1.2mm 두께의 샌드위치 판재의 성형한계도를 수정된 Marciniak-Kuczynski(M-K) 이론에 의해서 구하였다. 판재의 이방성을 표현하기 위해서 Hill의 1948년 항복곡선 표현 식을 사용하였다. 그 결과 샌드위치 판재의 성형한계도가 AA5182판재보다 더 우수하게 평가되었으며 이것은 실험값과 잘 일치하였다.

  • PDF

AA5182 알루미늄 판재의 Nd:YAG 레이저 용접에서 유전 알고리즘을 이용한 공정변수 최적화에 대한 연구 (A Study of Process Parameters Optimization Using Genetic Algorithm for Nd:YAG Laser Welding of AA5182 Aluminum Alloy Sheet)

  • 박영환;이세헌;박현성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1322-1327
    • /
    • 2007
  • Many automotive companies have tried to apply the aluminum alloy sheet to car body because reducing the car weight can improve the fuel efficiency of vehicle. In order to do that, sheet materials require of weldablity, formability, productivity and so on. Aluminum alloy was not easy to join these metals due to its material properties. Thus, the laser is good heat source for aluminum alloy welding because of its high heat intensity. However, the welding quality was not good by porosity, underfill, and magnesium loss in welded metal for AA5182 aluminum alloy. In this study, Nd:YAG laser welding of AA 5182 with filler wire AA 5356 was carried out to overcome this problem. The weldability of AA5182 laser welding with AA5356 filler wire was investigated in terms of tensile strength and Erichsen ratio. For full penetration, mechanical properties were improved by filler wire. In order to optimize the process parameters, model to estimate tensile strength by artificial neural network was developed and fitness function was defined in consideration of weldability and productivity. Genetic algorithm was used to search the optimal point of laser power, welding speed, and wire feed rate.

  • PDF

5182 Al합금판의 전기저항 점용접부 피로거동에 관한 연구 (A Study on the Fatigue Behavior of Resistance Spot Welded Part of 5182 Aluminum Aloy Sheet)

  • 신현일;박용석;강성수
    • Journal of Welding and Joining
    • /
    • 제16권2호
    • /
    • pp.84-92
    • /
    • 1998
  • On this study, the variations of hardness and microstructure were observed at he spot-welded part of 5182 alminum alloy sheets with thickness of 1.2 mm. The hardness of spot-welded part of aluminum alloy indicated the lowest value at nugget center. Also, the position where fatigue crack exists was investigated by surveying microstructure of the spot-welded sections. Mean load-deformation diagrams were obtained from static tensile test. Fracture was occurred completely within 5 mm after transforming elastic into plastic area. Fatigue test was stopped when the specimens of fatigue test had the final displacement of 0.2mm and measured fatigue bending angle and crack length. This study utilized them, investigated the relations between fatigue bending angle and fatigue crack length and made a estimation of the fatigue fracture life of resistance spot welded part of 5182 aluminum alloy sheet. The relative equation o fatigue crack length and fatigue failure life can be represented by {TEX}$L_{C}${/TEX}=α{TEX}$N_{f}^ {β}${/TEX}.

  • PDF

자동차용 알루미늄 5185-폴리프로필렌 샌드위치 판재의 성형성 (Formability of Aluminum 5182-Polypropylene Sandwich Panel for Automotive Application)

  • 김기주;정효태;손일선;김철웅;김중배
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.175-181
    • /
    • 2007
  • The objective of this study was to develop formability evaluation techniques in order to apply aluminum sandwich panel for automotive body parts. For this purpose, newly adopting formability evaluation (using limit dome height and plane strain test) was carried out in order to secure the fundamental data for the measurement of sheet metal forming and the establishment of optimum forming conditions of the aluminum sandwich panel. The results showed that there were good agreements between the old formability evaluation method and the new method which was more simplified than that of old one. From the results of these formability evaluation, the formability of sandwich panel was higher than that of aluminum alloy sheet alone which was the skin component for the sandwich panel. Also, it was found that sandwich panel could reduce the weight and could have the same flexural rigidity simultaneously when it was compared to the automotive steel sheet.

5182 알루미늄 합금판재의 재결정 집합조짓에 대한 I/d 파라메타의 영향 (Effect of I/d Parameter on Recrystallization Textures of AA5182 Alloy Sheets)

  • 김기주;원시태
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1086-1093
    • /
    • 2011
  • To fabricate the aluminum alloys with good drawability, the textures evolution of the AA5182 sheets due to the change of lid parameter after rolling and subsequent annealing was studied. The measurement of the deformation textures was carried out for the sheets with high reduction ratio and the change of the recrystallization texture was investigated after heat-treatments of the rolled sheets in various I/d parameters. Rolling without lubrication and subsequent annealing led to the formation of favorable rot-$C_{ND}$ {001}<110> and ${\gamma}$-fiber ND//<111> textures in AA5182 sheets. From the results, the ${\gamma}$-fiber ND//<111> component well evolved during rolling at high lid parameter of 6.77. The initial shear deformation texture, especially, ${\gamma}$-fiber ND//<111> was not rotated during heat treatment in holding time of 180~7,200 seconds on AA5182 with I/d parameter of 6.77. Therefore, the AA5182 sheets were fabricated by controlling I/d parameter having well evolved ${\gamma}$-fiber ND//<111> which was advantageous in good drawability of the sheets.

이종 AI합금의 저항점용접부 용접성과 피로특성에 관한 연구 (A Study on the Weldability and the Fatigue Characteristics in Resistance pot Welding of 5182-O/6061-T6 Dissimilar Aluminum Alloy Sheets)

  • 박진철;정원욱;강성수
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.44-52
    • /
    • 1999
  • This study deals with spot weld ability of dissimilar aluminum alloy sheets in order to take advantage of its lightweight and strength. The paper also shows the relationship between weld elements(i.e. current, welding time and tip force) and weld quality on the resistance spot weld part of the same and dissimilar Al alloy. The conclusions are: (1) Because of excessive tip force, deep indentation remained at the Al 5182 side which is lower stiffness at the dissimilar Al alloy. (2) Weld quality (i.e. tensile shear strength) of dissimilar Al alloy is superior to that of the same Al 6061 alloy. (3) As long cycles, fatigue life of spot weld specimen on dissimilar Al alloy sheets was better than that of the same Al alloy.

  • PDF

알루미늄 5182 압연 판재의 어닐링 집합조직 (Textures Evolution of Rolled AA5182 Alloy Sheets after Annealing)

  • 김기주;신광선;정효태;백영남
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.128-134
    • /
    • 2005
  • In order to fabricate the aluminum alloys with good drawability, the textures evolution of the AA5182 sheets after rolling and annealing was studied. The measurement of the deformation textures was carried out for the sheets which were cold rolled with high reduction ratio by using the symmetric roll. In addition, the change of the recrystallization texture was investigated after heat-treatments of the rolled sheets with various heat treatment conditions. Rolling without lubrication and subsequent annealing led to the formation of favorable $rot-C_{ND}\;\{001\}<110>\;and\;{\gamma}-fiber ND//<111>$ textures in AA5182 sheets. From the results, the ${\gamma}$-fiber ND//<111> component well evolved during rolling at highest reduction ratio (over $90\%$, l/d parameter of 6.77). Among shear deformation textures, the ${\gamma}$-fiber ND//<111> was not rotated in holding time of $180\~7,200$ seconds at $350^{\circ}C$. The Monte-Carlo technique was used and could be representatively simulated these textures evolution during recrystallization.