• Title/Summary/Keyword: Aluminium toxicity

Search Result 17, Processing Time 0.032 seconds

Toxic Effects of Aluminium on Freshwater Animals: Review (알루미늄이 수생동물에 미치는 독성에 관한 소고)

  • Park, Chan Jin;Kim, Dae Han;Han, Sang Ho;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.271-285
    • /
    • 2014
  • Aluminum flows into the river from the abandoned mine leachate, industrial wastewater, and sewage and is responsible for acute toxicity in aquatic organisms. Recently, the number of reports have indicated the increased toxicity in a variety of aquatic organisms' due to the aluminum toxicity. In this study, we reviewed the toxicity of aluminum on aquatic invertebrates, fishes and amphibians and suggested the guideline for management of aluminum residues in aquatic environment and strategies for aluminum toxicity evaluation. In aquatic animals aluminum complexes evoke gill dysfunction primarily, the cytotoxicity, genotoxicity, oxidative stress, disruption of endocrine function, reproductive success, metabolism and homeostasis. Notably, at environmentally relevant concentration, aluminum complex can alter the hormone levels in fish in acidic condition. Further, since the solubility of aluminum is higher in the acidic and basic conditions, thus it is likely that the toxic effects of aluminum may not only occur in acidic water near the abandoned mines but also in lakes and rivers, where pH is raised by algal bloom.

Assessment of Anti-Scattering Effect by Aluminium Sulfate (황산알루미늄수화물에 의한 비산방지 효과 평가)

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.470-474
    • /
    • 2010
  • Various anti-scattering agents for suppression of dust scattering at waste depository were compared in this study. Based on the price, easy of usage, and no toxicity, 1% of $Al_2(SO_4)_3$ was selected as surface hardening agents. Only lower than 2% of total weight were flied when wind speed was monthly maximum velocity during 1 hr. These results were quite good with comparison of S anti-scattering agents which was made by C company in Korea. When $Al_2(SO_4)_3$ was spread, the surface waste became hard therefore the effect of suppression of scattering dust was long lasting. It was recommend that 2% of $Al_2(SO_4)_3$ was spread to keep suppression of scattering dust when sudden gust of wind such as natural disaster was occurred.

Size, Shape, and Crystal Structure-dependent Toxicity of Major Metal Oxide Particles Generated as Byproducts in Semiconductor Fabrication Facility (반도체 가공 작업환경에서 부산물로 발생되는 주요 금속산화물의 입자 크기, 형상, 결정구조에 따른 독성 고찰)

  • Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.119-138
    • /
    • 2016
  • Objectives: The purpose of this study is to review size, shape, and crystal structure-dependent toxicity of major metal oxide particles such as silicon dioxide, tungsten trioxide, aluminum oxide, and titanium dioxide as byproducts generated in semiconductor fabrication facility. Methods: To review the toxicity of major metal oxide particles, we used various reported research and review papers. The papers were searched by using websites such as Google Scholar and PubMed. Keyword search terms included '$SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$) toxicity', 'health effects $SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$). Additional papers were identified in references cited in the searched papers. Results: In various cell lines and organs of human and animals, cytotoxicity, genotoxicity, hepatoxicity, fetotoxicity, neurotoxicity, and histopathological changes were induced by silicon dioxide, tungsten trioxide, aluminium oxide, and titanium dioxide particles. Differences in toxicity were dependent on the cell lines, organs, doses, as well as the chemical composition, size, surface area, shape, and crystal structure of the particles. However, the doses used in the reported papers were higher than the possible exposure level in general work environment. Oxidative stress induced by the metal oxide particles plays a significant role in the expression of toxicity. Conclusions: The results cannot guarantee human toxicity of the metal oxide particles, because there is still a lack of available information about health effects on humans. In addition, toxicological studies under the exposure conditions in the actual work environment are needed.

Removal of sulfate ion from semiconductor wastewater by ettringite precipitation

  • Chung, Chong-Min
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.183-189
    • /
    • 2022
  • This study seeks towards an optimal way to control sulfate ions in semiconductor wastewater effluent with potential eco-toxicity. We developed a system based on ettringite (Ca6Al2(SO4)3(OH)12·26H2O). The basic idea is that the pH of the water is raised to approximately 12 with Ca(OH)2. After, aluminium salt is added, leading to the precipitation of ettringite. Lab-scale batch and continuous experiment results with real semiconductor wastewater demonstrated that 1.5 and 1 of stoichiometric quantities for Ca2+ and A3+ with pH above 12.7 could be considered as the optimal operation condition with 15% of sludge recycle to the influent. A mixed AlCl3 + Fe reagent was selected as the beneficial Al3+ source in ettringite process, which resulted in 80% of sludge volume reduction and improved sludge dewaterability. The results of continuous experiment showed that with precipitation as ettringite, sulfate concentration can be stably reduced to less than 50 mg/L in effluent from the influent 2,050 ± 175 mg/L on average (1,705 ~ 2,633 mg/L).

Growth Inhibition of Cucumber by Absorbing Excess Al at Low Soil pH (강한 산성토양에서 Al의 과잉 흡수에 의한 오이 생육장해 양상)

  • Kim, Yoo-Hak;Kim, Myung Sook;Kang, Seong Soo;Lee, Hyeong Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.925-927
    • /
    • 2012
  • On-site diagnosis applied to soil having a symptom of yellowing and whitening in cucumber leaf and stem. Soil pH determined 4.2 by methods of on-site analysis and 4.5 by soil test analysis. High aluminum in soil solution extracted with water saturation was detected. Leaf and stem tissue were abundant in Al content but not in Ca. Also, N content of leaf and stem was low compared to normal N ranges. This symptom of cucumber assumed to be from the Al and nitrous acid gas toxicity by low soil pH and Eh. Conclusionally, symptom in leaf and stem of cucumber was alleviated and cucumber normally recovered during cultivation period by applying calcium hydroxide solution to correct soil pH up to 6.5. These results showed that low soil pH resulted in aluminum toxicity and N deficiency to plant growth in on-site farming.

Effects of Aluminium on Growth, Chlorophyll Content, ALAD Activity and Anatomy of Root rind Shoot in Azuki Bean (Vigna angularis) Seedlings (Aluminium이 팥(Vigna angularis) 유식물의 생장, 엽록소함량, ALAD활성 및 뿌리와 경엽부의 형태에 미치는 영향)

  • 구서영;홍정희
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.813-826
    • /
    • 1996
  • The toxic effects of aluminium (Al) on growth, chlorophyll content, $\delta-aminolevulinic$ acid dehydratase (ALAD) activity and anatomy of root and shoot were investigated in 7-day-old azuki bean (Vigna angularis) seedlings. Significant depressions in root elongation was observed in the low concentrations of Al (50, 100 $\muM)$ and increasing Al concentrations caused a sharp decline of root and shoot growth. The degree of inhibition was dependent upon Al supply. Exposure to 50 $\muM$ Al or more inhibited root elongation within 1 day. In the 50 $\muM$ Al treatments, a recovery of root growth was seen after 7 days exposure. In contrast, lateral root initials was little affected by Al exposure. Al toxicity symptoms and growth responses were more well developed in the roots than in the shoots. Analysis of Al localization in root cells by hematoxylin stAlning showed that Al entered root apices and accumulated in the epidermal and cortical cells immeadiately below the epidermis. There was a good positive correlation between the level of chlorophyll and ALAD activity. Increasing Al concentrations caused a decrease in total chlorophyll contents, accompanied by proportional changes in ALAD activity, suggesting a cootr-dinated reduction of a photosynthetic machinery. Al exerted specific influence on the morphology of root ann shoot. At higher concentrations of Al the roots induced drastic anatomical changes. The epidermal cells were disorganized or destructed while the cortical cells exhibited distortion of cell shape and/or disintegration. The diameter of root and transectional area of cortical cells decreased considerably with Al treatment. In the shoot Al also enhanced reduction of diameter of shoot and cell size. Gross anatomy of leaves treated with Al did not differ significantly from the controls, except for fewer and smaller chloroplast. Our results indicate that toxic effect of Al appear to be manifested primarily in roots and secondarily on shoots, and changes in root morphology are related to changes in the root growth patterns. Results are further discussed in re181ion to the findings in other plant species, and it is concluded that Al causes morphological, structural and, presumably, functional damage to the roots of the species investigated.

  • PDF

Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications

  • Rittapai, Apiwat;Urapepon, Somchai;Kajornchaiyakul, Julathep;Harniratisai, Choltacha
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.215-223
    • /
    • 2014
  • PURPOSE. This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. MATERIALS AND METHODS. Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (${\alpha}$=0.05). The alloy toxicity was evaluated according to the ISO standard. RESULTS. The solidus and liquidus points of experimental alloys ranged from $1023^{\circ}C$ to $1113^{\circ}C$ and increased as the nickel content increased. The highest ultimate tensile strength ($595.9{\pm}14.2$ MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity ($113.9{\pm}8.0$ and $122.8{\pm}11.3$ GPa, respectively), but also had a value of 0.2% proof strength ($190.8{\pm}4.8$ and $198.2{\pm}3.4$ MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. CONCLUSION. The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications.

Water Deficit of Pitch Pines Caused by Superficial Rooting and Air Pollutants in Seoul and Its Vicinity

  • Joon-Ho kim;Rhyu, Tae-Cheol
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.309-316
    • /
    • 1994
  • To make regional comparisons of water status of pitch pine, the temporal changes of water status in pitch pine were investigated at different areas; urban Seoul (heavily polluted area), surburb of Seoul (lightly polluted area), and rural area (control). The effects of air pollutants, acid rain and chemical properties of soil on water deficit in pitch pine were also investiaged. Water content of needles growing at polluted areas were usually lower than that at unpolluted area. Water saturation deficit of needles growing at polluted areas were usually higher than that at unpolluted area especially in dry season. These results indicated that water in needles growing at polluted areas were usually more deficient than that at unpolluted area, and were more deficient in April than other months. At polluted areas, the older the needles were, the more quickly transpirated the water in the needle was. At unpolluted areas, however, water in old needles was not so quickly transpirated as those at polluted areas. Water potential of needles of pitch pine seedlings treated with simulated acid rain (SAR) of pH 3.5 decreased more quickly than that of needles treated with SAR of pH 5.6. Loss of water through epicuticular layer was greater in the following order: magnesium deficiency+100 $\mu$M aluminium>100$\mu$M aluminium>magnesium deficiency>control. In addition to Mg deficiency and Al toxicity, growth decline of pitch pine widely occurring in polluated Seoul could to a large extent be due to cuticle degredation and abnormal vertical distribution of fine roots, which lead to water stress, particularly in dry seasons.

  • PDF

Review on the mechanism for the reduction of raphide-induced toxicity via processing of Pinelliae Tuber and Arisaematis Rhizoma (포제(炮製)에 의한 반하(半夏)와 천남성(天南星)의 침상결정 유발 독성 감소 기전 고찰)

  • Kim, Jung-Hoon;Lee, Guemsan;Choi, Goya;Kim, Young-Sik;Lee, Seungho;Kim, Hongjun
    • The Korea Journal of Herbology
    • /
    • v.36 no.5
    • /
    • pp.15-27
    • /
    • 2021
  • Objectives : The processing of Pinelliae Tuber and Arisaematis Rhizoma is a crucial step to reduce the severe acrid irritation mainly due to the needle-like crystals (raphides). Ginger, alum and bile juice have been used as adjuvant materials for the processing. Methods : Bibliographic research on ancient processing and experimental processing was performed to investigate the toxicity reduction mechanisms of the processing with ginger, alum and bile juice. Results : Ginger has been a major adjuvant for the processing of Pinelliae Tuber, followed by alum and bile juice since Song (宋) and Myeong (明) dynasties, and Arisaematis Rhizoma has been mainly used as Damnamseong (膽南星). The raphides consisting of calcium oxalate, lectin, agglutinin and polysaccharides can induce acrid irritation and the inflammatory reactions. The lipophilic components in the ginger denatured the structure of raphides and 6-gingerol-contained ginger extract attenuated the inflammatory reaction. The calcium ion (Ca2+) of calcium oxalate was substituted to the aluminium ion (Al3+) of the alum, which damaged the calcium oxalate structure. Lectin attached to the surface of raphides was dissolved in alum solution and consequently its structure was denatured. The cholate in the bile juice formed the complex with the oxalate anion or the calcium cation. Moreover, the enzymes activated by Lactobacillus or Bifidobacterium during the fermentation promoted the fragmentation of oxalate. Conclusion : The adjuvant materials damaged the raphides by denaturing or degrading the calcium oxalate, resulting in the reduction of acrid irritation. Further experimental studies would support the toxicity reduction mechanism of the processing.

Studies of Liming Effect on the Improvement of an Acid Sulphate Paddy Soil (특이산성답(特異酸性畓) 토양(土壤)의 개량(改良)을 위(爲)한 석회시용(石灰施用) 효과(?果)에 관(關)한 연구(硏究))

  • Park, Young-Sun
    • Applied Biological Chemistry
    • /
    • v.17 no.3
    • /
    • pp.193-218
    • /
    • 1974
  • These studies were carried out for the elucidation of liming effect on the growth of rice seedlings and the chemical characteristics of an acid sulphate paddy that shows not only extremely high acidity of soil but also poor growth of rice plants, consequently low yield. Thus the liming effect on the changes of acidity, oxidation-reduction potential, and the contents of iron, aluminium, sulphate, and phosphorus fractions in the soil was investigated under the waterlogging and drying condition. The reclaimable or inhibitory effect of phosphorus, iron and aluminium on the growth of rice seedlings was also investigated under liming. The results are summarized as follows: 1. After liming, the pH of the acid sulphate subsoil decreased again on drying. 2. The oxidation-reduction potential reached a minimum after 5 days of flooding and greatly decreased on liming but increased after drying. 3. The contents of ferrous iron soluble in water-and Morgan's solution reached a maximum after 15 days of flooding and only the content of water soluble ferrous iron was greatly decreased. 4. The content of aluminium soluble in water-and Morgan's solution decreased by flooding and liming, and showed a tendency to increase on drying. 5. In the limed acid sulphate soil, the content of water soluble calcium showed a highly significant negative correlation with the content of sulphate and liming decreased sulphate content in the soil. 6. The contents of total phosphorus was 496.3 ppm in the acid sulphate topsoil and 387.5 ppm in the subsoil. The content of each phosphorus fraction was in the order of Fe-P>Occ. Fe-P>Ca-P>Occ. Al-P>Al-P and Fe-P content in the soil was the highest fraction among them. 7. Lime application increased greatly Ca-P and Al-P, and Occ. Fe-P and Occ. Al-P only slightly, but decreased Fe-P differently in each soil. 8. Effect of phosphorus on the dry matter yield of rice seedlings was great. The optimum amount of phosphorus to produce maximum dry matter yield of rice seedlings appeared to be 6.8% of maximum absorption (absorption coefficient) without liming and 10.0% with liming. 9. In rice seedlings liming increased the content and uptake of calcium and silica but decreased those of iron and aluminium. Phosphorus application increased the content and uptake of phosphorus and decreased iron while the application of iron and aluminium increased their contents and uptake but decreased those of phosphorus. 10. Liming greatly alleviated such toxicity of iron and aluminium. 11. When phosphorus was applied, the dry matter yield of rice seedlings showed highly significant positive correlations with uptake of phosphorus, calcium and silica each. When iron and aluminium were applied, dry matter yields indicated significant positive correlations with the contents or uptake of calcium and silica each, but significant negative correlations with the content or uptake of iron and aluminium. 12. Under the application of phosphorus and lime, dry matter yields showed significant positive correlations with pH and Morgan's extractable calcium each of the soil samples after harvest. Under the application of lime, iron and aluminium, dry matter yields showed significant positive correlations with pH, calcium and silica each, but negative correlations with iron and aluminium contents each of the soil samples after harvest.

  • PDF