• Title/Summary/Keyword: Alumina membrane

Search Result 163, Processing Time 0.028 seconds

Preparation and Characterization of $TiO_2$ Membranes for Microfiltration ($TiO_2$ 정밀여과막의 제조 및 특성)

  • 한상욱;최세영;현상훈;조철구;강한규
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.700-708
    • /
    • 1996
  • TiO2 membranes for microfiltration were prepared on $\alpha$-alumina support tube by slurry coating. The coating layer was obtained by flowing TiO2 slip on the inner surface of the alumina support. TiO2 membranes were heat-treated at 9$25^{\circ}C$ for 2 hrs. The thickness of the unsupported membrane was about 10${\mu}{\textrm}{m}$. The mean pore diameter of the membranes were 0.09 and 0.15${\mu}{\textrm}{m}$ respectively and the pure water flux was 900~1,200ι/m2.hr at room temperature and 1 bar. For a possible application of oily wastewater treatement an kerosene/wa-ter emulsion was separated in terms of flux and removal efficiency. In 60 min of operating time the flux of TiO2 membranes was 50~100 ι/m2.hr and removal efficiency was over 97% at 3kgf/cm2 of operating pres-sure and 600 ml/min of flow rate. TiO2 membranes could be recycled by reheat treatments at $600^{\circ}C$ for 2 hrs.

  • PDF

Fabrication of the alumina membrane with nano-sized pore array using the thin film aluminum (박막 알루미늄을 이용한 나노미터 크기의 미세기공 형성)

  • Lee, Byoung-Wook;Lee, Jae-Hong;Lee, Eui-Sik;Kim, Chang-Kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.120-122
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using thin film aluminum deposited on silicon wafer was fabricated. It is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2M was used for low voltage anodization under 100V, the chromic acid with 0.1M was used for high voltage anodization over 100V. The nano-sized pores with diameter of 60~120nm was obtained by low voltage anodization of 40~90V and those of 200~300nm was obtained by high voltage anodization of 120~160V. Finally, the sample was immersed to the phosphoric acid with 0.1M concentration to etching the barrier layer. The sample will be applied to electronic sensors, field emission display, and template for nano-structure.

  • PDF

Fabrication and Ionic Current Rectification Characteristics of Biomimetic Aluminum Oxide Membrane (생체모방형 비대칭 나노채널을 갖는 산화알루미늄 분리막 제조 및 이온 정류 특성)

  • Jung, Jaehoon;Kim, Jongyoung;Choi, Kiwoon;Lee, Joonho;Kang, Il-suk;Ahn, Chi-won;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.181-189
    • /
    • 2020
  • In the present study, a biomimetic alumina membrane was fabricated by using selenic acid as an electrolyte to overcome the asymmetry limit of the square pulse anodization process. The prepared membrane has conical channels with a minimum diameter of 10 nm, a maximum diameter of 50 nm, and a length of 5 ㎛. The rectification property was higher than membranes fabricated by sulfuric acid. It showed 2.9 times larger current at +1 V than -1 V. Also, the membrane, which sulfonic acid group was introduced by surface modification, showed 4.2 times larger rectification property at -1 V than +1 V. Theoretical verifications were supported by the numerical analyses of 2D models. The results of the present study present a convenient method to fabricate two type membranes with different rectification properties and are expected to be used to control ion transport.

Permeation Behavior of Microfiltration Membrane by Alumina Colloidal Suspension under a Cyclic Variation in TMP (운전압력의 순환변화에 따른 알루미나 현탁액의 정밀여과 투과거동)

  • Nam, Suk-Tae;Han, Myeong-Jin
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • This study investigated the fouling behavior of $Al_2O_3$ colloids on polyethylene microfiltration membrane. To examine the effect of operation variation on fouling, operating pressure was increased from 0.49 to 1.96 bar along with time elapses and then was reduced to 0.49 bar reversely. A hysteresis behavior was observed in the membrane permeate flux over pressure, revealing different fluxes at the same pressure according to the pressure control type, increasing and decreasing. Permeate resistance and its rate of increase was higher in the decreasing pressure cycle than in the increasing pressure cycle. At the initial period of filtration, fouling mechanism for the both cycles was governed by the cake filtration. The degree of fouling was higher in the decreasing pressure cycle compared with in the increasing pressure cycle.

Effect of Seed Coating Layer on the Microstructure of NaA Zeolite Separation Layer Grown on ${\alpha}$-alumina Support (종결정 코팅층이 다공성 ${\alpha}$-알루미나 지지체 표면에 성장되는 NaA 제올라이트 분리층의 미세구조에 미치는 영향)

  • Kim, Min-Ji;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.375-385
    • /
    • 2014
  • NaA zeolite/${\alpha}$-alumina composite membranes were hydrothermally synthesized at $100^{\circ}C$ for 24 hr by using nanosize seed of 100 nm in diameter and an ${\alpha}$-alumina support of $0.1{\mu}m$ in pore diameter, and then effect of seed coating layer on the microstructure of NaA zeolite separation layer was systematically investigated. In cases when nanosize seed was coated with a monolayer, increment in seed coverage induced small grained and thick NaA zeolite separation layer. On the other hand, in case when nanosize seed was coated with a multilayer, much small grained and thick separation layer was formed. It was clear that an uniform monolayer seed coating is required to grow hydrothermally a thin and defect-free NaA zeolite separation layer. In the present study, it was clearly announced that seed coating layer is a key factor to determine the microstructure of NaA zeolite layer, secondary grown on a porous support.

Preparation of a Water-Selective Ceramic Membrane on a Porous Stainless Steel Support by Sol-Gel Process and Its Application to Dehydration Membrane Reactor

  • Lee, Kew-Ho;Sea, Bongkuk;Youn, Min-Young;Lee, Yoon-Gyu;Lee, Dong-Wook
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.10-15
    • /
    • 2004
  • We developed a water-selective ceramic composite membrane for use as a dehydration membrane reactor for dimethylether (DME) synthesis from methanol. The membranes were modified on the porous stainless steel support by the sol-gel method accompanied by a suction process. The improved membrane modification process was effective in increasing the vapour permselectivity by removal of defects and pinholes. The optimized alumina/silica composite membrane exhibited a water permeance of 1.14${\times}$10$^{-7}$ mol/$m^2$.sec.Pa and a water/methanol selectivity of 8.4 at permeation temperature of 25$0^{\circ}C$. The catalytic reaction for DME synthesis from methanol using the membrane was performed at 23$0^{\circ}C$, and the reaction conversion was compared with that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor was much higher than that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor and the conventional fixed-bed reactor was 82.5 and 68.0%, respectively. This improvement of reaction efficiency can last if the water vapour produced in the reaction zone is removed continuously.

Preparation of NH4+-β"-alumina as a Protonic Solid Electrolyte by Ion Exchange Reaction (이온교환반응에 의한 양성자 고체 전해질 NH4+-β"-alumina의 제조)

  • Lee, Jun-Hee;Han, Choon-Soo;Lee, Sung-Tae;Lee, Ki-Moon;Lee, Dae-Han;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.255-260
    • /
    • 2011
  • $NH_4{^+}-{\beta}^{{\prime}{\prime}}$-alumina which is expected to an inorganic solid electrolyte of high temperature polymer electrolyte membrane fuel cells (PEMFC) was prepared by ion-exchange reaction of $K^{+}-{\beta}^{{\prime}{\prime}}$-alumina pellet with $NH_4NO_3$ aqueous solution and molten $NH_4NO_3$ salts as an ion-exchange medium in the autoclave and the heating mentle reaction. In the autoclave reaction, the concentrations of $NH_4NO_3$ solution was chosen at 5 and 10 M. Each ion-exchange reaction was carried out at 130, 150, 170, and $200^{\circ}C$ for 2, 4, 6 and 8 h. In the heating mentle reaction, ion-exchange was performed at $200^{\circ}C$ for 2, 4, 6 and 8 h with molten $NH_4NO_3$ salts. In order to determine the effect of reaction times, each ion-exchange reaction was repeated 3 times. The phase stability and the ion-exchange rate of $NH_4{^+}-{\beta}^{{\prime}{\prime}}$-alumina were analyzed by XRD and ICP.

The Evaluation of Properties for Modified micro-porous Alumina Membrane (미세기공 알루미나막의 기공 보정 및 특성 평가)

  • 이진휘;정은정
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.53-54
    • /
    • 1996
  • 최근의 산업발달로 고품위, 고순도의 제품을 얻기 위한 분리 공정 분야의 중요성이 대두되는 가운데 경우에 따라서는 지금가지 보편적으로 이용해 오던 증류, 추출 등의 공정들보다 더욱 효과적이고 경제적인 방법인 막분리 기술이 지속적으로 발전을 거듭해 오고 있다. 막분리 분야에서는 무기막 분야보다는 주로 고분자 분리막이 공업적으로 더 많이 응용되어 왔으나, 조업 조건상 때로는 사용에 제한을 받는 경우도 있다. 무기막의 발전은 고분자막을 사용할 수 없었던 조업 분야에 막분리 기술을 확대시켜 나갈 수 있는 계기를 마련할 수도 있다. 이에 본 연구에서는 시판되는 막의 결손 부분을 선택적인 방법으로 caulking하는 방법을 시도하였고, caulking전후의 기체와 액체의 투과도와 PEG/water 혼합물의 rejecting test를 비교해서 caulking의 효율성 여부를 판단하였다.

  • PDF

Development of Ceramic Composite Membranes for Gas Separation: III. Examination of Membrane Characteristics by the Gas Permeation Model (기체분리용 세라믹 복합분리막의 개발: III. 기체투과 모델에 의한 막의 특성 규명)

  • 현상훈;윤성필;강범석
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.905-911
    • /
    • 1992
  • Model equations for the gas permeation through a ceramic composite membrane were derived for examining the existence of crack, the reproducibility, and the microstructural properties of composite membranes. From the results of analyzing the nitrogen permeability data through alumina-tube supported TiO2 and SiO2 composite membranes, the extent of cracking, and the formation and structure of membrane top-layers were modelled. It was proved that the crack-free and reproducible composite membranes could be easily prepared only by the pore-filled coating within pores of the support in the sol-gel coating process.

  • PDF