• Title/Summary/Keyword: Alumina Powder

Search Result 413, Processing Time 0.02 seconds

Synthesis and Characterization of Zeolite Using Water Treatment Sludge (정수슬러지를 이용한 제올라이트의 합성 및 특성연구)

  • Ko, Hyun Jin;Ko, Yong Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Zeolite was synthesized hydrothermally using the water-treatment sludge, and the effects of various synthesis parameters like reaction temperature, reaction time, and Na2O/SiO2 molar ratio on the crystallization of zeolite were investigated. Crystal structure, physical property, and thermal stability of zeolite crystals were characterized by X-ray powder diffraction, FTIR spectroscopy, BET nitrogen adsorption, and TGA measurements. The removal efficiencies of nitrogen in ammonia, heavy metal ions, and TOC were calculated to evaluate zeolite's adsorption capacity. The primary chemical composition of water-treatment sludge was 28.79% Al2O3 and 27.06% SiO2. The zeolites were synthesized by merely employing the water-treatment sludge as silica and alumina sources without additional chemicals. Zeolite crystals synthesized through the water-treatment sludge were confirmed as an A-type zeolite structure. Zeolite A had the highest crystallinity obtained from a gel with the molar composition 2.1Na2O-Al2O3-1.6SiO2-65H2O after 5 h at a temperature of 90 ℃. The specific surface area of zeolite obtained was 55 ㎡ g-1, which was higher than commercial zeolite A. The removal efficiency of nitrogen in ammonia was 68% after 3 h of reaction time, while the removal efficiencies of Pb2+ and Cd2+ ions were 99.1% and 99.3%, respectively. These results indicate active ion exchange between Pb2+ or Cd2+ ion and Na+ ion in the zeolite framework. The adsorption experiments on the different zeolite addition conditions were performed for 3 h with 300 ppm humic acid. Based on the results, TOC's highest efficiency was 83% when 5 g of zeolite was added.

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

A study of the tensile bond strength between Polyetherketoneketone (PEKK) and various veneered denture base resin (Polyetherketoneketone (PEKK)과 다양한 의치상용 전장 레진 간의 인장결합강도에 관한 연구)

  • Park, Yeon-Hee;Seo, Jae-Min;Lee, Jung-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.3
    • /
    • pp.231-238
    • /
    • 2022
  • Purpose. This study aimed to investigate the effect of different veneering methods on the tensile bond strength between polyetherketoneketone (PEKK) and denture base resins. Materials and methods. A total of 80 PEKK T-shaped specimens were fabricated and the primer (Visio.link) was applied after airborne-particle abrasion with 110 ㎛ alumina oxide powder. According to the veneering method, the specimens were divided into four groups (n = 20) to be veneered with the gingival colored packable photopolymerized composite resin (SR Adoro); flowable photopolymerized composite resin, (Crea.lign); heat-polymerized resin (Vertex); and self-polymerized resin (ProBase Cold). Each group was divided into two subgroups (n = 10) according to the artificial thermal aging. After the tensile bond strength measurement via universal testing machine, the fracture sections of all specimens were observed. Two-way ANOVA and Tukey's HSD post hoc test were used for the statistical analysis (α = .05). Results. The results of the two-way ANOVA showed statistically significant differences in the tensile bond strength according to the veneering method and artificial thermal aging of denture base resins (P<.001). The highest tensile bond strength showed in the packable photopolymerized resin group before and after the artificial thermal aging. The lowest tensile bond strength showed in the heat-polymerized resin group. The mixed and adhesive fracture showed in all groups. Conclusion. The veneering method and artificial thermal aging can influence in the tensile bond strength between the resin and PEKK. The artificial thermal aging can reduce the tensile bond strength.