• Title/Summary/Keyword: Alumina Ceramic

Search Result 882, Processing Time 0.022 seconds

Homogeneous Shape Forming of Alumina by Pressure-Vacuum Hybrid Slip Casting (가압-진공 하이브리드 주입성형에 의한 알루미나의 균질 성형)

  • Cho, Kyeong-Sik;Song, In-Beom;Kim, Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.592-600
    • /
    • 2012
  • Conventional methods for preparing ceramic bodies, such as cold isostatic pressing, gypsum-mold slip casting, and filter pressing are not completely suitable for fabricating large and thick ceramic plates owing to disadvantages of these processes, such as the high cost of the equipment, the formation of density gradients, and differential shrinkage during drying. These problems can be avoided by employing a pressure-vacuum hybrid slip casting approach that considers not only by the compression of the aqueous slip in the casting room (pressure slip casting) but also the vacuum sucking of the dispersion medium (water) around the mold (vacuum slip casting). We prepared the alumina formed bodies by means of pressure-vacuum hybrid slip casting with stepwise pressure loading up to 0.5 MPa using a slip consisting of 40 vol% solid, 0.6 wt% APC, 1 wt% PEG, and 1 wt% PVA. After drying the green body at $30^{\circ}C$ and 80% RH, the green density of the alumina bodies was about 56% RD. The sintered density of an alumina plate created by means of sintering at $1650^{\circ}C$ for 4 h exceeded 99.8%.This method enabled us to fabricate a $110{\times}110{\times}20$ mm alumina plate without cracks and with a homogeneous density, thus demonstrating the possibility of extending the method to the fabrication of other ceramic products.

Processing of Plasma Resistant Alumina Ceramics (내플라즈마성 알루미나 세라믹스 제조 공정)

  • Lee, Hyun-Kwuon;Cho, Kyeong-Sik;Kim, Mi-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.385-391
    • /
    • 2009
  • Need for plasma resistant ceramic materials has been continuously increased in semiconductor and display industry requiring plasma processing to realize ultra fine circuit process. Among promising candidates, alumina ceramics have still some advantages with respect to its economic aspect. In this study, fabrication of plasma resistant alumina ceramics was tried, and its processing optimization was also aimed. Careful processing control and thereby uniform microstructure of $Al_2O_3$ gave rise to enhanced plasma resistance, even comparable to market-governing commercial $Al_2O_3$. A further study is needed concerning ${\beta}-Al_2O_3$ materials system, presumably playing a decisive role in decreasing plasma resistance of $Al_2O_3$ ceramics.

Effects of Monosaccharides and Disaccharides on the Rheological Behavior of Dense Alumina Slurries I. Creep Testing Method

  • Kim, Jong-Cheol;Auh, Keun-Ho;Chr
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.104-109
    • /
    • 1999
  • Rheological properties of dense slurries over 45 volume % with different monosaccharides and disaccharides were checked in order to increase the solid content of dense slurries without sacrificing plasticity using creep testing method. Strain in creep test showed good correlations with Burger model which is expressed as an exponential function of time. Among several monosaccharides and disaccharides studied here, fructose and sucrose were most effective in making dense alumina slurry plastic than other monosaccharides and disaccharides like glucose, galactose, xyloss and maltose. In the case of dense alumina slurry with sucrose, sucrose content or additional water content enhanced to the plasticity of the slurries.

  • PDF

Microstructural Behavior of Alumina Aggregate Compacts Prepared by Transient Liquid Phase Sintering

  • Lee, Seung-Jae;Kim, Hai-Doo;Lee, Deuk-Yong;Kim, Dae-Joon
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.78-82
    • /
    • 2000
  • Although alumina aggregates have been used as refractory aggregates due to the improved mechanical properties of refractories as a result of the low contraction of alumina aggregates, the aggregates have a difficulty in fabrication due to its low sinterability. Two types of alumina aggregates and a fused alumina aggregate containing transient liquid forming additives are prepared to investigate the sintering characteristics of aggregates. $Al_2O_3$rich composition in the $Al_2O_3$-MgO-$SiO_2$(-$TiO_2$) system is chosen for the transient liquid phase sintering and the final recrystallized bonding phase between grains inside the fused alumina aggregates is found to be a needle-like mullite phase. The flexural strength of alumina bars, reaction-bonded using the paste having a composition of $Al_2O_3$-MgO-$SiO_2$-$TiO_2$, is about 78 MPa, which is one half value of that of pure alumina.

  • PDF

Microstructural Change of Doped-Alumina Membrane (도핑된 알루미나 여과막의 미세구조 변화)

  • 이진하;최성철;한경섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1040-1047
    • /
    • 1999
  • After alumina sol was prepared by Yoldas process supported membranes were fabricated by adding ce and Re solution and SiO2 sol into alumina sol. The particle size of alumina sol was 11 nm and it was monodispersed transparent and stable for long time. The pore size of un-doped membrane started to increase to about 7,5nm at 1000$^{\circ}C$ and it was grown to twice (about 15nm) at 1100$^{\circ}C$ However the pore size of doped alumina was uniform to 1100$^{\circ}C$. The effect of retardation of grain growth was superior in SiO2 addition to that of Ce and Ru Because SiO2 doped samples transformed to needed-like phase and densified at 1200$^{\circ}C$ their application in membranes was limited. Ce and Ru doped sample showed vermicular structure identical to the un-doped ones at 1200$^{\circ}C$ But the particle size was smaller than that of un-doped ones.

  • PDF

Formation of La-$\beta$-Aluminate in $\alpha$-Alumina Matrix and Its Influence on Mechanical Properties (La-$\beta$-Aluminate의 형성이 $\alpha$-Alumina의 기계적 성질에 미치는 영향)

  • 강석원;고재웅;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • Alumina ceramics was reinforced by in-situ formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The powder mixture of which composition is (100-12x)Al2O3+x(La2O3+11Al2O3) was prepared for the formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The amount of La-${\beta}$-aluminate in the matrix was controlled by varing x which is number of moles. The dense composite was produced by sintering at 1600$^{\circ}C$ in air or hot-pressing at 1550$^{\circ}C$ under 30 MPa. Bending strength and fracture toughness were increased, resulting from the grain growth inhibition and the crack deflection and crack bridging mechanism when La-${\beta}$-aluminate was produced in ${\alpha}$-alumina matrix.

  • PDF

Viscosity Study to Optimize a Slurry of Alumina Mixed with Hollow Microspheres

  • Bukhari, Syed Zaighum Abbas;Ha, Jang-Hoon;Lee, Jongman;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.403-409
    • /
    • 2015
  • Porous alumina ceramics are involved in many industrial applications due to the exceptional properties of these products. This study addresses the preparation of porous alumina ceramics using hollow microspheres as a pore-forming agent and slip casting as a green-body-forming technique. A uniform distribution of pores is a basic requirement of a porous material. This study investigates three different slurry systems, i.e., as-prepared alumina slurry, alumina slurry electrostatically dispersed by hydrochloric acid (HCl), and slurry dispersed by the commercial dispersant 'Darvan C-N'. At a low viscosity, the hollow microspheres in the slurry tend to float, which causes a non-uniform pore distribution. To avoid this phenomenon, the viscosity of the slurry was increased to the extent that the movement of hollow microspheres ceased in the slurry. As a result, a uniform pore distribution was achieved.

Effects of Particle Size Distribution of Alumina on Behaviors of Tape Casting (테이프 케스팅 거동에 미치는 알루미나의 입도분포의 영향)

  • 윤원균;김정주;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1173-1181
    • /
    • 1997
  • Effects of particle size distribution of alumina ceramics on behaviors of tape casting were investigated with emphases on the rheological characteristic of slurry, green density, green sheet strength, and sintering density. For the control of particle size distribution of alumina, the commercial grade low soda alumina, which had different mean particle size of 3.58 ${\mu}{\textrm}{m}$ and 0.42 ${\mu}{\textrm}{m}$, were chosen and blended together. As results, the mixing of 80 wt% fine powder and 20 wt% coarse powder(designated to FC20) led to the increase of packing density and strength of green sheet, and made it easy to handle during processing without lowering of sintering density. Besides, the pseudoplastic behavior of slurry decreased with increase of the fraction of coarse alumina powder.

  • PDF

Effects of MgO Addition on Densification and Microstructural Development during Liquid-Phase Sintering of Alumina-Anorthite System (알루미나-anorthite 계의 액상소결에서 MgO의 첨가가 치밀화 및 미세구조에 미치는 영향)

  • 김호양;이정아;김정주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.11
    • /
    • pp.1243-1251
    • /
    • 1999
  • Densification behavior and microstructural evolution during the liquid-phase sintering of alumina-anorhite system were investigated as a function of MgO addition. When MgO component was added in either alumina or anorthite glass powder the aspect ratio of alumina grains decreased and concurrently the are of flat interface which was formed as a result of contact solid alumina gains rather increased. Consequently addition of MgO component in the Al2O3-amorthite system brought about suppression of the rearrangement of solid grains during the liquid phase sintering and then densification of specimens was also retarded.

  • PDF

Changes of Camber on Lamination Conditions in alumina/Tungsten Cofiring Multilayer Package (알루미나/텅스텐 동시소성에 의한 다층 팩키지 제조시 적층조건에 따른 camber의 변화)

  • 성재석;구기덕;윤종광;이상진;박정현
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.601-610
    • /
    • 1997
  • In cofiring of multilayered alumina with tungsten, the change of camber with lamination condition was experimented and the effect of sintering shrinkage of alumina and tungsten was investigated. From the exact measurement of sintering shrinkage of tungsten thick film, as lamination pressure increased, the sintering shrinkage of alumina decreased but that of tungsten thick film was not changed. So it was though that the main factor which induced the sintering shrinkage difference between ceramics and metal with lamination condition was the change of sintering shrinkage of ceramics. In case of high lamination pressure, high green sheet density, the cofired specimen showed low camber due to low shrinkage difference between alumina and tungsten and there was a linear relation between camber and shrinkage difference. It was found that this shrinkage difference could change the thickness of tungsten film and the microstructure within via hole during cofiring.

  • PDF