• Title/Summary/Keyword: Alumina Abrasives

Search Result 23, Processing Time 0.025 seconds

A Study on the Grinding Characteristics of Various Alumina Abrasives (알루미나 연삭입자의 연삭특성에 관한 연구)

  • Bang, Jin-Young;Ha, Sang-Baek;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • In this paper, the relationship between the mechanical properties of alumina abrasives and grinding performance was investigated. Micro vickers hardness and fracture strength of all abrasives used in this study were measured. The grinding experiments were earned out with alumina grinding wheels made by various kinds of alumina abrasives including 32A, WA, ART, ALOMAX, and RA. The performance of such grinding wheel for grinding SKD11 was evaluated by specific grinding energy, grinding-ratio, and surface roughness. The grinding wheels composed by the harder abrasives and the lower fracture strength abrasives showed better grinding performance.

  • PDF

A Study on the Ultrasonic Machining Characteristics of Alumina Ceramics (알루미나 세라믹의 초음파가공 특성 연구)

  • Kang, Ik-Soo;Kang, Myung-Chang;Kim, Jeong-Suk;Kim, Kwang-Ho;Seo, Yong-Wie
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2003
  • Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study alumina($Al_2O_3$) was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02mm, 27kHz frequency, three slurry ratios (abrasives water by weight) of 11, 13 and 15 with different tool shapes and applied pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 11 and static pressure of $25kg/cm^2$, maximum material removal rate of $18.97mm^3/mm$ was achieved with mesh number of 600 SiC abrasives and static pressure of $30kg/cm^2$, best surface roughness of $0.76{\mu}m$ Ra was obtained.

  • PDF

Effect of Alumina Addition tn the Silica Slurry on the Chemical Mechanical Polishing of Laugasite (실리카 슬러리에 첨가된 알루미나가 Langasite의 기계.화학적 연마에 미치는 영향)

  • 장영일;윤인호;임대순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.263-268
    • /
    • 1999
  • Langasite, a new piezoelectric material was polished by CMP(chemical mechanical polishing). To enhance the polishing rate, alumina abrasives were added to commercial ILD1300 slurry which contains silica abrasive. The effect of added alumina 0 the silica slurry on the polishing rate and damage of langasite was investigated, Experimental results show that the polishing rate and roughness increases with increasing added alumina particle size, Crystallinity of the langasite is also lowered by alumina addition.

  • PDF

Chemical Mechanical Polishing Characteristics of Mixed Abrasive Slurry by Adding of Alumina Abrasive in Diluted Silica Slurry (탈이온수로 희석된 실리카 슬러리에 알루미나 연마제가 첨가된 혼합 연마제 슬러리의 CMP 특성)

  • 서용진;박창준;최운식;김상용;박진성;이우선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.465-470
    • /
    • 2003
  • The chemical mechanical polishing (CMP) process has been widely used for the global planarization of multi-layer structures in semiconductor manufacturing. The CMP process can be optimized by several parameters such as equipment, consumables (pad, backing film and slurry), process variables and post-CMP cleaning. However, the COO(cost of ownership) is very high, because of high consumable cost. Especially, among the consumables, the slurry dominates more than 40 %. In this paper, we have studied the CMP characteristics of diluted silica slurry by adding of raw alumina abrasives and annealed alumina abrasives. As an experimental result, we obtained the comparable slurry characteristics compared with original silica slurry in the view-point of high removal rate and low non-uniformity. Therefore, we can reduce the cost of consumables(COC) of CMP process for ULSI applications.

Development of the Abrasives for Water-jet by Using an Air Bubbling Sedimentation Rate Control Technique (에어 버블링을 이용한 침강속도 제어기법 적용 습식워터젯용 연마제 개발)

  • Lee, Dae-Hyung;Kim, Young-Bea;Mo, Se-Woong;Kim, Min-Ho;Lee, Chong-Mu
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.232-236
    • /
    • 2010
  • In recent years abrasive water jet (AWJ) has received significant attention as a technology used in the manufacturing industry for cutting materials. In this paper we report the development of a new preparation method of abrasives for water jet by using an air bubbling sedimentation rate control technique. The SiC abrasives prepared by an air bubbling sedimentation rate control technique using latex resin are found to be superior to the conventional abrasives not only in surface roughness uniformity but also in lifetime. The AWJ test results also show that the former has also better impact-resistance and wear-resistance than the latter.

An Experimental Study on the Ultrasonic Machining Characteristics of Engineering Ceramics

  • Kang Ik Soo;Kim Jeong Suk;Seo Yong Wie;Kim Jeon Ha
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.227-233
    • /
    • 2006
  • Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study, alumina $(Al_2O_3)$ was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02mm, 27kHz frequency, three slurry ratios of 1:1, 1:3 and 1:5 with different tool shapes and applied static pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 1:1 and static pressure of $2.5kg/cm^2$, maximum material removal rate of $18.97mm^3/min$ was achieved. With mesh number of 600 SiC abrasives and static pressure of $3.0kg/cm^2$, best surface roughness of $0.76{\mu}m$ Ra was obtained.

Nano-scale Precision Polishing Characteristics using a Micro Quill and Magnetic Chain Structure (미세공구와 자기체인구조를 이용한 초정밀 폴리싱 특성)

  • 박성준;안병운;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.34-42
    • /
    • 2004
  • A new polishing technique for three dimensional micro/meso-scale parts is suggested using a micro quill and a magnetic chain structure. The principle of this method is to polish the target surface with the collected magnetic brushes at a micro tool by the non-uniform magnetic field generated around the tool. In a typical magnetic abrasive finishing process magnetic particles and abrasive particles are unbonded each other. But, to finish the three dimensional small parts bonded magnetic abrasive have to be used. Bonded magnetic abrasives are made from direct bonding, and their polishing characteristics are also examined. Alumina, silicon carbide and diamond micro powders are used as abrasives. Base metal matrix is carbonyl iron powder. It is found that bonded magnetic abrasives are superior to unbonded one by experiment. finally, the polished surface roughness is evaluated by atomic force microscope.

Comparison of cutting performance of an AWJ with several types of abrasives (Water jet 절단에서의 연마재 종류별 성능 비교 시험)

  • Choon Sunwoo;;Ryu Chang ha;Kwng soo Kwon
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.175-183
    • /
    • 1996
  • Linear cutting tests on granite were conducted to evaluated the cutting performance of abrasive water jet(AWJ) using several types of abrasives. The abrasives used in the tests were grarnet, alumimum oxide, and silicon carbide. And one type of granite which is comercially known as "KeuchangSuk" was used as workpiece throughout the tests. The results from the tests were described in terms of cutting depth and abrasive productivity. Authors tried to confirm the effects of the operational parameters of abrasive mass flow rate, water pressure, and traverse speed of nozzle on cutting depth and presented almost all the data obtained in the tests. Abrasive productivity can be defined as the area of kerf wall cut by unit weight of abrasive and is an important factor to evaluated the cutting ability of abrasive and assess the cost effectiveness of an AWJ system. In the tests the maximum abrasive productivities of garnet, alumina, and silicon carbide were about 0.21, 0.24, and 0.20 $\textrm{cm}^2$ respectively under similar operational conditions.onditions.

  • PDF

Development of Ultraprecision Finishing Technique using Bonded Magnetic Abrasives (결합된 자성연마입자를 이용한 초정밀 피니싱 기술 개발)

  • 윤종학;박성준;안병운
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.59-66
    • /
    • 2003
  • This study suggests the new ultraprecision finishing techniques for micro die and mold parts using magnetic field-assisted polishing. Conventional magnetic abrasives have several disadvantages, which are missing of abrasive particle and inequal mixture between magnetic particle and abrasive particle. Therefore, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Carbonyl iron powder is used as magnetic particle there silicon carbide and alumina are abrasive particles. Developed magnetic abrasives are analyzed using SEM. Feasibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 85.4 ㎚ Ra to 9 ㎚ RA.

The Effect of Abrasive Particles on the Frictional Properties of Automotive Brake Friction Materials (자동차용 마찰재의 연마재가 마찰특성에 미치는 영향)

  • Jang, Ho;Lee, Eun-Ju;Cho, Keun-Hyung
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • The frictional properties of automotive brake pads with four different ceramic materials such as magnesia, hematite, alumina, and zircon were investigated. A Krauss type friction tester using gray iron disks was used to examine the friction coefficient, intensity of friction force oscillation, and the tribe-surfaces. Results showed that the friction coefficient increased as the hardness of abrasives increases. Friction oscillation was also increased with hardness of the abrasives. However, the friction materials containing less abrasive particles produced stable friction films on the sliding surface. The transition between two-body and three body abrasion during sliding also played a crucial role in destructing the friction film on the pad surface and in determining various frictional properties.