• Title/Summary/Keyword: Altitude Test

Search Result 382, Processing Time 0.023 seconds

Defect Diagnostics of Gas Turbine with Altitude Variation Using Hybrid SVM-Artificial Neural Network (SVM-인공신경망 알고리즘을 이용한 고도 변화에 따른 가스터빈 엔진의 결함 진단 연구)

  • Lee, Sang-Myeong;Choi, Won-Jun;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • In this study, Hybrid Separate Learning Algorithm(SLA) consisting of Support Vector Machine(SVM) and Artificial Neural Network(ANN) has been used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine in the off-design range considering altitude variation. Although the number of teaming data and test data highly increases more than 6 times compared with those required for the design condition, the proposed defect diagnostics of gas turbine engine using SLA was verified to give the high defect classification accuracy in the off-design range considering altitude variation.

Development and Validations of Air Data System using MEMS Sensor for High-Performance UAV (MEMS 압력센서를 이용한 고성능 무인항공기용 공력자료시스템의 개발과 검증)

  • Baek, Un-Ryul;Kim, Sung-Su;Kim, Sung-Hwan;Park, Choon-Bae;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.1017-1025
    • /
    • 2008
  • The air data system(ADS) was developed for unmanned aerial vehicle(UAV) in this paper. Generally, the ADS helps flight control computer(FCC) to control the UAV above the stall speed and to hold the given altitude. The accurate measurement of airspeed and altitude of UAV is important because it indicates a flight performance and assures a safe flight. The ADS consists of MEMS pressure sensors, a lowpass filter, a micro controller unit and a pitot-tube. The ADS errors were reduced by pressure and temperature compensation of MEMS sensors. Finally, the altitude and airspeed data of the ADS was compared with GPS data in the flight test.

Development of Altitude Determination System by Using GPS/INS/Baroaltimeter (GPS/INS/기압고도계를 결합한 고도 결정 시스템 개발)

  • Kim, Seong-Pil;Yoo, Chang-Sun;Salychev, Oleg-S.;Kim, Eung-Tai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.51-56
    • /
    • 2005
  • This paper introduces an altitude determination algorithm using GPS/INS/Baroaltimeter and evaluates the algorithm by real field tests. The test results show that the proposed method can determine the altitude of an aircraft continuously and sensitively. Therefore, it is appropriate to be used as an altimeter for a flight control system, especially for the automatic take-off and landing. In addition, it is shown that the second and the third baro-inertial vertical channel damping methods are essentially complementary filters while the proposed scheme improves these complementary filters.

Design of Guidance Law and Lateral Controller for a High Altitude Long Endurance UAV (고고도 장기체공 무인기의 유도 및 방향축 제어 알고리즘 설계)

  • Koo, Soyeon;Lim, Seunghan
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • This paper elaborates on the directional axis guidance and control algorithm used in mission flight for high altitude long endurance UAV. First, the directional axis control algorithm is designed to modify the control variable such that a strong headwind prevents the UAV from moving forward. Similarly, the guidance algorithm is designed to operate the respective algorithms for Fly-over, Fly-by, and Hold for way-point flight. The design outcomes of each guidance and control algorithm were confirmed through nonlinear simulation of high altitude long endurance UAV. Finally, the penultimate purpose of this study was to perform an actual mission flight based on the design results. Consequently, flight tests were used to establish the flight controllability of the designed guidance and control algorithm.

An Experimental and Numerical Study of Corona in a Cage with Sandy and Dusty Flow in High Altitude Area

  • Lv, Yukun;Ge, Zekun;Liu, Yunpeng;Zhu, Lei;Wei, Shaoke
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1726-1733
    • /
    • 2015
  • In order to study the effect of the high-altitude and dusty weather in northwest of China on the corona characteristics of transmission lines, a corona caged based experimental system with sandy and dusty flow condition is numerically investigated and designed. This system overcomes the difficulties caused by harsh environment and offers easy usage for off-site tests. The design parameters are mainly determined by the characteristics of strong sandstorm in northwest region and test requirements. By the comparison of numerical simulation of the particle diffusion in four programs with rectangular or circular air-duct, a practical technology, which introduces swirl to control the particle diffusion length, is obtained. Accordingly, the structure of round air-duct with swirl elbow in inlet and outlet of high level segment is selected as final program. Systems of control and measurement are designed at the same time. Field tuning results show that the test system could ensure the range of sandy and dusty coverage. The wind speed, sandy and dusty concentration could be controlled and meet the requirements of accuracy. The experimental system has many features, such as simple structure, easy to be assembled, disassembled, transported and operated, small space occupied.

Study on the effect of Jet Fuel alteration on Turbine Engine Performances through Turbine Engine Test (터빈엔진시험을 통한 제트연료 변경에 따른 엔진성능 변화 연구)

  • Kim, You-Il;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.23-28
    • /
    • 2011
  • The engine ground and altitude tests were carried out to investigate the effect of jet fuel alteration on the performance of a small turbojet engine. JP-S was supplied 8% higher than JP-8 by fuel metering system at the same command. The employment of JP-S showed the similar starting characteristic to that of JP-8, however, difference in the ignition time and acceleration rate of engine speed due to the difference of fuel flow rate by fuel metering system was observed. In spite of jet fuel alteration, the test results yield the similar steady-state engine performance in net thrust, air flow, exhaust gas temperature, etc. On the other hand, the fuel consumption of JP-S increased by 5 % compared with that of JP-8. In point of specific fuel consumption (SFC), SFC of JP-S was approximately 1.1~2.6 %, 5 % higher than that of JP-8 in ground and altitude tests respectively at the same thrust.

Study on the effect of Jet Fuel alteration on Turbine Engine Performances through Turbine Engine Test (터빈엔진시험을 통한 제트연료 변경에 따른 엔진성능 변화 연구)

  • Kim, You-Il;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.410-415
    • /
    • 2010
  • The engine ground and altitude tests were carried out to investigate the effect of jet fuel alteration on the performance of a small turbojet engine. JP-S was supplied 8% higher than JP-8 by fuel metering system at the same command. The employment of JP-S showed the similar starting characteristic to that of JP-8, however, difference in the ignition time and acceleration rate of engine speed due to the difference of fuel flow rate by fuel metering system was observed. In spite of jet fuel alteration, the test results yield the similar Steady-State engine performance in Net thrust, Air flow, Exhaust Gas Temperature, etc. On the other hand, the Fuel consumption of JP-S increased by 5 % compared with that of JP-8. In point of Specific Fuel Consumption (SFC), SFC of JP-S was approximately 1.1~2.6 %, 5 % higher than that of JP-8 in ground and altitude tests respectively at the same thrust.

  • PDF

Ground Altitude Computation Algorithm using Laser Altimeter and GPS for UAV Automatic Take-off and Landing (레이저 고도계 및 GPS를 이용한 무인기의 자동이착륙용 지면고도계산 알고리듬 설계)

  • Cho, Sangook;Choi, Keeyoung;Kim, Sung-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • This paper presents a ground altitude determination algorithm using a laser altimeter and GPS for automatic take-off and landing of UAV. The characteristics of the laser altimeter was analyzed in ground tests and a low-pass filter was designed to reduce the effect of signal interruption due to reflectivity problem. The paper shows that a single sensor cannot measure ground altitude appropriately in terms of reliability and accuracy. To complement shortcomings of the laser altimeter, the linear Kalman filter was designed using DGPS vertical speed. Designed filter was validated and tuned through the steps of simulation, ground test and flight test. It was confirmed that the accuracy for automatic landing is achievable.

Implementation of Signal Processing Algorithms for an FMCW Radar Altimeter (FMCW 전파고도계의 신호처리 알고리즘 구현)

  • Choi, Jae-Hyun;Jang, Jong-Hun;Lee, Jae-Hwan;Roh, Jin-Eep
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.555-563
    • /
    • 2015
  • This paper presents signal processing algorithms of a frequency-modulated continuous-wave(FMCW) radar altimeter and provides a practical assessment technique. The radar altimeter is initially operated in search mode, when the radar altimeter detects a valid altitude, search mode is switched to track mode and a altitude being tracked is displayed. The sweep bandwidth in each mode is a function of altitude to narrow the beat frequency bandwidth. In addition, transmit power and receiver gain in each mode are controlled to compensate for the dynamic range of wide altitude range. To assess more realistic operation, the radar altimeter was tested using the crane setup. The crane test demonstrated that signal processing algorithms described in this paper resulted in a reduced measurement error rate.

Characteristics of Propulsion System at the High Altitude Flight Test of 50m-long Airship (50m급 비행선의 고고도 비행시험에서 추진시스템 특성)

  • Jung Yong-Wun;Yang Soo-Seok;Kim Dong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.41-44
    • /
    • 2006
  • The propulsion system of VIA-50A airship consists of engine, generator, inverter, motor and propeller. The motor and propeller was designed that can be tilted to $120^{\circ}$ for thrust vector control. When the flight test was performed, various condition data of the airship were obtained by wireless telecommunication and analyzed in real-time. In this paper, we presented flight test results of propulsion system. Considering the designed requirement and normal range, we verified that all constituent part was operated in normal condition during the high altitude flight test.

  • PDF