• Title/Summary/Keyword: Altitude Test

Search Result 382, Processing Time 0.021 seconds

High-Altitude Environment Simulation of Space Launch Vehicle Including a Thruster Module (추력기 모듈을 포함한 우주발사체 고공환경모사)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.791-797
    • /
    • 2018
  • In this work, the high-altitude environment simulation study was carried out at an altitude of 65 km exceeding Mach number of 6 after the launch of Korean Space Launch Vehicle using a shock tunnel. To minimize the flow disturbance due to the strut support of test model as much as possible, a few different types of strut configurations were considered. Using the configuration with minimum disturbance, the high-altitude environment simulation experiment including a propulsion system with a single-plume, was conducted. From the thruster test through flow visualization, not only a shockwave pattern, but a general flow-field pattern from the mutual interaction between the exhaust plume and the free-stream undisturbed flow, was experimentally observed. The comparison with the computation fluid dynamic(CFD) results, showed a good agreement in the forebody whereas in the afterbody and the nozzle the disagreement was about ${\pm}7%$ due to unwanted shockwave formation emanated from the nozzle-exit.

Preliminary Design of a High Altitude Test Facility using a Secondary Throat Exhaust Diffuser and an Ejector (이차목 디퓨저와 이젝터를 사용한 고공환경모사장치 예비설계)

  • Kim, Joong-Il;Jeon, Jun-Su;Kim, Tae-Wan;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.475-478
    • /
    • 2012
  • In this study, preliminary design of a high-altitude test facility (HATF) was performed to simulate the high-altitude environment using a rocket engine that liquid oxygen and kerosene were used as the propellant. Experimental facility consists of vacuum chamber, supersonic exhaust diffuser, heat exchanger, ejector and gas generator. The vacuum chamber was simulated and maintained high-altitude environmental pressure by supersonic exhaust diffuser. Combustion gas of the rocket engine was cooled by water at heat exchanger after that the mixed gas was emitted to the air by ejector. The ejector which was operated by the steam generator using 75% ethanol and liquid oxygen as propellants and water for steam maintains a vacuum condition.

  • PDF

The effect of 3 weeks high altitude skiing training on isokinetic muscle function of cross-country skierst (3주간의 고지대 스키훈련이 크로스컨트리 스키 선수의 등속성 근기능에 미치는 영향)

  • Choi, Yong Chul
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.465-477
    • /
    • 2018
  • The purpose of this study is to analyze the effect of three - week high altitude ski training on the myocardial performance of cross - country skiers and to provide basic data for the future improvement of cross - country skiers'. The subjects were 6 cross - country skiing male college athletes. To investigate the effects of periodic and high altitude training on cross - country skiers, a general linear model ANOVA with repeated measure And analyzed using the Paired Samples t-test. In high altitude ski training for 3 weeks, the body composition did not change but the isokinetic muscular function of the shoulder joint, hip joint, knee joint, and ankle joint was decreased. Therefore, further study is needed if it is considered that continuous strength training should be performed during the ski training period such as SP period.

Statistical Energy Analysis of Low-Altitude Earth Observation Satellite (저궤도 지구관측 위성의 통계적 에너지 해석)

  • Woo, Sung-Hyun;Kim, Hong-Bae;Im, Jong-Min;Kim, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.197-202
    • /
    • 2006
  • The low-altitude earth observation satellite is generally equipped with high performance camera as a main payload which is vulnerable to vibration environment. During the launch process of a satellite, the combustion and jet noise of launch vehicle produce severe acoustic environment and the acoustic loads induced may damage the critical equipments of the satellite including the camera. Therefore to predict and simulate the effect of the acoustic environment which the satellite has to sustain at the lift-off event is very important process to support the load-resistive design and test-qualification of components. Statistical Energy Analysis(SEA) has been widely used to estimate the vibro-acoustic responses of the structures and gives statistical but reliable results in the higher frequency region with less modeling efforts and calculation time than the standard FEA. In this study, SEA technique has been applied to a 3-Dimensional model of a low-altitude earth observation satellite to predict the acceleration responses on the structural components induced by the high level acoustic field in the launch vehicle fairing. In addition, the expected response on each critical component panel was calculated by the classical method in consideration of the mass loading and imposed sound pressure level, and then compared with SEA results.

  • PDF

Development Study of A Precooled Turbojet Engine for Flight Demonstration

  • Sato, Tetsuya;Taguchi, Hideyuki;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.109-114
    • /
    • 2008
  • This paper presents the development status of a subscale precooled turbojet engine "S-engine" for the hypersonic cruiser and space place. S-engine employs the precooled-cycle using liquid hydrogen as fuel and coolant. It has $23cm{\times}23cm$ of rectangular cross section, 2.6 m of the overall length and about 100 kg of the target weight employing composite materials for a variable-geometry rectangular air-intake and nozzle. The design thrust and specific impulse at sea-level-static(SLS) are 1.2 kN and 2,000 sec respectively. After the system design and component tests, a prototype engine made of metal was manufactured and provided for the system firing test using gaseous hydrogen in March 2007. The core engine performance could be verified in this test. The second firing test using liquid hydrogen was conducted in October 2007. The engine, fuel supplying system and control system for the next flight test were used in this test. We verified the engine start-up sequence, compressor-turbine matching and performance of system and components. A flight test of S-engine is to be conducted by the Balloon-based Operation Vehicle(BOV) at Taiki town in Hokkaido in October 2008. The vehicle is about 5 m in length, 0.55 m in diameter and 500 kg in weight. The vehicle is dropped from an altitude of 40 km by a high-altitude observation balloon. After 40 second free-fall, the vehicle pulls up and S-engine operates for 60 seconds up to Mach 2. High altitude tests of the engine components corresponding to the BOV flight condition are also conducted.

  • PDF

Design and Cold Test of Semi-Freejet High Altitude Environment Simulation Test Facility for High-Speed Vehicle (초고속 비행체를 위한 준 자유흐름식 고공환경 모사시험설비의 설계 및 상온실험)

  • Lee, Seongmin;Yu, Isang;Park, Jinsu;Ko, Youngsung;Kim, Sunjin;Lee, Jungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.115-124
    • /
    • 2018
  • In this study, a cold flow test was carried out on a high-speed vehicle facility with a high-altitude environment simulator. Variable test was carried out according to the blockage ratio, angle, and length of the test model. It is confirmed that the blockage rate can be operated in the range of 40%, and that the model should be selected at an angle of 45 degrees or less. The variables of length are less dominant compared to the variables of blockage rate and angle. Through this, a database is obtained according to the parameters of the conical model of the high-speed vehicle test facility.

A Study on Performance Change of Solid Rocket Motor for Variation of Nozzle Ambient Pressure (노즐 외기 압력 변화에 따른 고체추진기관 성능 변화 연구)

  • Kwon, Tae-Hoon;Rho, Tae-Ho;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.219-222
    • /
    • 2007
  • This research on 2nd stage solid rocket motor of KSLV-I for performance change was carried out. Solid rocket motor shall ignite on altitude of 300km. Solid Rocket Motor performed Static Firing Test and High Altitude Test for motor performance. A study made an analysis of specific impulse variation for nozzle ambient pressure.

  • PDF

A Development of Instrumentation Radar Tracking Status Simulator (계측레이더 추적 시뮬레이터 개발)

  • Ye, Sung-Hyuck;Ryu, Chung-Ho;Hwang, Gyu-Hwan;Seo, Il-Hwan;Kim, Hyung-Sup
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.405-413
    • /
    • 2011
  • Defense Systems Test Center in ADD supports increasingly various missile test requirements such as higher altitude event, multi target operation and low-altitude, high velocity target tracking. In this paper, we have proposed the development of instrumentation radar tracking status simulator based on virtual reality. This simulator can predict the tracking status and risk of failure using several modeling algorithms. It consists of target model, radar model, environment model and several algorithms includes the multipath interference effects. Simulation results show that the predict tracking status and signal are similar to the test results of the live flight test. This simulator predicts and analyze all of the status and critical parameters such as the optimal site location, servo response, optimal flight trajectory, LOS(Line of Sight). This simulator provides the mission plan with a powerful M&S tool to rehearse and analyze instrumentation tracking radar measurement plan for live flight test at DSTC(Defense Systems Test Center).

Prevalence of Cryptosporidium-Associated Diarrhea in a High Altitude-Community of Saudi Arabia Detected by Conventional and Molecular Methods

  • Hawash, Yousry;Dorgham, Laila Sh.;Al-Hazmi, Ayman S.;Al-Ghamdi, Mohammed S.
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.5
    • /
    • pp.479-485
    • /
    • 2014
  • Cryptosporidium diarrhea represents a relevant clinical problem in developing countries. In Al-Taif, a city of Saudi Arabia that lies at an altitude of an around 2 km above the sea level, Cryptosporidium infection seems to be undiagnosed in nearly all clinical laboratories. Furthermore, nothing was published regarding Cryptosporidium-associated diarrhea in this area. The objectives of this research were to (1) determine the Cryptosporidium prevalence among patients with diarrhea and (2) to estimate the performances of 3 different diagnostic methods. Total 180 diarrheal fecal samples, 1 sample per patient, were collected between January and August 2013. Samples were screened for Cryptosporidium with modified Zeihl Neelsen (ZN) microscopy, $RIDA^{(R)}$ Quick lateral flow (LF) immunotest, and a previously published PCR. The Cryptosporidium prevalence rate was 9.4% (17/180), 10% (18/180), and 11.6% (21/180) by microscopy, LF, and PCR test, respectively. Infection was significantly (P=0.004) predominant among children <5 years (22%) followed by children 5-9 years (11.1%). Although infection was higher in males than in females (16.2% males and 8.5% females), the difference was not statistically significant (P=0.11). Compared to PCR, the sensitivity of microscopy and the LF test were 80.9%, 85.7%, respectively. To conclude, high Cryptosporidium-associated diarrhea was found in this area especially in children ${\leq}9$ years. The PCR test showed the best performance followed by the LF test and ZN staining microscopy. The primary health care providers in Al-Taif need to be aware of and do testing for this protozoon, particularly for children seen with diarrhea.

Small Turbojet Engine Test and Uncertainty Analysis (소형 터보제트 엔진 시험 및 불확도 분석)

  • Jun, Yong-Min;Yang, In-Young;Nam, Sam-Sik;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.118-126
    • /
    • 2002
  • The Altitude Engine Test Facility(AETF) was built at the Korea Aerospace Research Institute and has been being operated for the gas turbine engines in the class of 3,000 lbf thrust. To enhance the confidence level of AETF to the international level, a series of studies and facility modification have been conducted to improve the measurement uncertainty and reliability. In this paper, some part of the facility evaluation tests performed with a single spool turbojet engine are introduced. Tests were performed simulating the flight conditions as steady state, sea level for various flight speeds (i.e., Mn=0.3, 0.5, 0.7, 0.9). The obtained test results are compared with the predicted values of the engine DECK. The measurement uncertainties of airflow, net thrust, fuel flow and SFC showed 0.791~0.914%, 0.851~1.706%, 1.372~7.348% and 1.642~5.205%, respectively. Thus, from this research, the improvement methods of uncertainties on AETF has been confirmed.