• Title/Summary/Keyword: Altimeter Data

Search Result 102, Processing Time 0.024 seconds

Computation of Tides in the Northeast Asian Sea by Blending the Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계 자료를 이용한 북동 아시아 해역의 조석 산정)

  • Kim, Chang-Shik;Matsumoto, Koji;Ooe, Masatsugu;Lee, Jong-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • Tidal computations of $M_2,\;S_2,\; K_1$ and $O_1$ constituents in the northeast Asian sea are presented by blending the Topex/Poseidon (T/P) altimeter data into a hydrodynamic model with $5'{\times}5'$ resolution. A series of sensitivity experiments on a weighting factor, which is the control parameter in the blending method, are carried out using $M_2$ constituent. The weighting factor is set to be in inverse proportion to the square root of water depth to reduce noises which could occur in data-assimilative model by blending T/P data. Model results obtained by blending the T/P-derived $M_2,\;S_2,\; K_1$ and $O_1$ constituents simultaneously are compared with all T/P-track tidal data; Average values of amplitude and phase errors are close to zero. Standard deviations of amplitude and phase errors are approximately 2 cm and less than 10 degrees respectively. The data-assimilative model results show a quite good agreement with T/P-derived tidal data, particularly in shallow water region (h<250m). In deep water regions, T/P-derived tidal data show unreasonable spatial variations in amplitude and phase. The data-assimilative model results differ from T/P-derived data, but are improved to show reasonable spatial variations in amplitude and phase. In addition, the T/P-blended model results are in good agreement with coastal tide gauge data which are not blended into the model.

  • PDF

Comparison of variations in sea surface height with sea surface temperature and wind field in the Tropical Pacific Ocean

  • Chul, Kang-Sung;Schumann, Robert;Murai, Shunji;Kiyoshi, Honda;Kim, Young-Seup
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.225-230
    • /
    • 1998
  • The purpose of this study is to contribute the development of an El Nino prediction model. The objectives of the study are to (1) extract sea surface height data from the TOPEI/Poseidon altimeter, and (2) compare the relations among the sea surface height, sea surface temperature and wind field. NOAA AVHRR Multi-channel data is used for sea surface temperature and wind data is derived from ERS 1, 2 AMI wind scatterometer. The results showed that sea surface height has increased significantly during the El Nino season. The sea surface height is positively related to sea surface temperature and negatively related to zonal wind.

  • PDF

Enhanced Recovery of Gravity Fields from Dense Altimeter Data

  • Kim, Jeong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.2
    • /
    • pp.127-139
    • /
    • 1996
  • This paper presents a procedure to recover sea surface heights (SSH) and free-air (FA) gravity anomalies from dense satellite altimeter SSH data with enhanced accuracies over the full spectrum of the gravity field. A wavenumber correlation filtering (WCF) of co-linear SSH tracks is developed for the coherent signals of sub-surface geological masses. Orbital cross-over adjustments with bias parameters are applied to the filtered SSH data, which are then separated into two groups of ascending and descending tracks and gridded with tensioned splines. A directional sensitive filter (DSF) is developed to reduce residual errors in the orbital adjustments that appear as track patterned SSH. Finally, FA gravity anomalies can be obtained by the application of a gradient filter on a high resolution estimate of geoid undulations after subtracting dynamic sea surface topography (DSST) from the SSH. These procedures are applied to the Geosat Geodetic Mission (GM) data of the southern oceans in a test area of ca. $900km\;\times{1,200}\;km$ to resolve geoid undulations and FA gravity anomalies to wavelengths of-10 km and larger. Comparisons with gravity data from ship surveys, predictions by least squares collocation (LSC), and 2 versions of NOAA's predictions using vertical deflections illustrate the performance of this procedure for recovering all elements of the gravity spectrum. Statistics on differences between precise ship data and predicted FA gravity anomalies show a mean of 0.1 mgal, an RMS of 3.5 mgal, maximum differences of 10. 2 mgal and -18.6 mgal, and a correlation coefficient of 0.993 over four straight ship tracks of ca. 1,600 km where gravity changes over 150 mgals.

  • PDF

On characteristics of environmental correction factors in the South Indian Ocean by Topex/Poseidon satellite altimetric data (Topex/Poseidon 위성의 Altimeter자료를 이용한 남인도양의 환경보정인자 특성에 관한 연구)

  • 윤홍주;김영섭;이재철
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.117-128
    • /
    • 1998
  • Topex/Poseidon satellite, launched in Auguest 1992, has provided more 5 years of very good quality data. Efficient improvements, either about instrumental accuracy or about sea level data correction, have been made so that Topex/Poseidon has become presently a wonderful tool for many researchers. The first mission data of 73 cycles, September 1992 - August 1994, was used to our study in order to know characteristics of environmental correction factors in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean. According to standard procedures as defined under user handbook for sea surface height data processes, then we have chosen cycles 43 as the cycle of reference because this cycle has provided the completed data for measurement points and has presented the exacted position of ground track compared to another cycles. It was computed variations of various factors for correction in ascending ground track 103(Amsterdam-Kerguelen continental plateau) and descending ground track170 (Crozet basin). Here the variations of ionosphere, dry troposphere, humid troposphere, electromagnetic bias, elastic tide and loading tide were generally very smaller as a few of cm, but the variations of oceanic tide(30-35cm) and inverted barometer(15-30cm) were higher than another factors. For the correction of ocean tide, our model(CEFMO: Code d' Elements Finis pour la Maree Oceanique) - This is hydrodynamic model that is very well applicated in all oceanic situations - was used because this model has especially good solution in the coastal and island area as the open sea area. Conclusionally, it should be understood that the variation of ocean free surface is mainly under the influence of tides(>80-90%) in the Amsterdam - Crozet- Kerguelen region of the South Indian Ocean.

SEA LEVEL VARIATIONS IN THE LONG TERM IN THE EAST SEA OF KOREA

  • Cho, Keun-Han;Kim, Hee-Jong;Lee, Dong-In;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.37-40
    • /
    • 2007
  • Satellite altimetric data from 1993 to 2006 are used to study sea level variations in the long tenn in the East Sea. The trend of sea level in the East Sea is rising 4.16 mm/yr and indicate that it rose 5.82 cm in 2006 against to 1993. The South Ses is the fastest in the study areas (4.89 mm/yr, 6.84cm) and the Yellow Sea is 4.10 mm/yr and 5.75cm, respectively. The both of Mokho coast and Ulleung island are minimal sea level in March to May and maximal sea level in September to November. For periods above 20.9days, coherences are found to be higher than 95% confidence level, and the phase differences are near zero.

  • PDF

Merging Two Regional Geoid Estimates by Using Optimal Variance Components of Type repro-BIQUUE: An Algorithmic Approach

  • SCHAFFRIN Burkhard;MAUTZ Rainer
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • When merging various datasets the perennial problem of relative weighting arises. In case of two datasets an iterative algorithm has been developed recently that allows the rigorous determination of optimal variance components of type repro-BIQUUE even for large amounts of data, along with the estimation of the joint parameters. Here we shall present this new algorithm, and show its versatility in an example that will entail the merging of two regional geoid estimates (derived from EGM 96 and CHAMP) in terms of certain series expansions which have been proven previously to belong to the most efficient ones (e.g., wavelets, Hardy's multi-quadrics, etc.). Future attempts will be devoted to the sequential merging of altimeter and tide gauge data.

  • PDF

Comparison of Sea Level Data from Topex/Poseidon in-situ Tide-Gauges in the East Sea (한반도 동해상에서의 Topex/Poseidon 고도자료와 현장 조위계 관측 자료의 비교연구)

  • Youn, Yong-Hoon;Kim, Na-Young;Kim, Ki-Hyun;Hwang, Jong-Sun;Kim, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2002
  • In an effort to properly assess the validity of spaceborne radar altimeter measurements, we made a direct comparison of two different sea surface heights (SSH) acquired by both Topex/Poseidon (T/P) satellite and in-situ tide-gauges (T/G). This comparative analysis was conducted using the data sets collected from three locations along the eastern coast of Korea which include: Ulleungdo, Pohang, and Sokcho. In the course of the analysis of satellite altimeter, information of SSH was extracted from the T/P MGDR data sets through the application of both atmospheric and geophysical corrections. To compare the T/P data sets in parallel basis, the T/G data sets were averaged using the measured values within the peripheral radius of 55km. When compared among different locations, the compatibility between the two methods was much more significant in an offshore location (Ulleungdo) than the two onshore locations (Pohang, Sokcho). If the low-pass filtered results were compared among the sites, the offshore site exhibited the best correlations between the two methods (correlation coefficient of 0.91) than those of the onshore sites. These large differences in the strength of correlations among different locations are due to the deformation of M2, S2, and K1 tidal components used in the tidal model. In case of the offshore location, the compatibility of the two different methods were improved systematically by the low-pass filtering with an increase of the filtering duration such as up to 200 days.

Multi-scale Correlation Analysis between Sea Level Anomaly and Climate Index through Wavelet Approach (웨이블릿 접근을 통한 해수면 높이와 기후 지수간의 다중 스케일 상관 관계 분석)

  • Hwang, Do-Hyun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.587-596
    • /
    • 2022
  • Sea levels are rising as a result of climate change, and low-lying areas along the coast are at risk of flooding. Therefore, we tried to investigate the relationship between sea level change and climate indices using satellite altimeter data (Topex/Poseidon, Jason-1/2/3) and southern oscillation index (SOI) and the Pacific decadal oscillation (PDO) data. If time domain data were converted to frequency domain, the original data can be analyzed in terms of the periodic components. Fourier transform and Wavelet transform are representative periodic analysis methods. Fourier transform can provide only the periodic signals, whereas wavelet transform can obtain both the periodic signals and their corresponding time location. The cross-wavelet transformation and the wavelet coherence are ideal for analyzing the common periods, correlation and phase difference for two time domain datasets. Our cross-wavelet transform analysis shows that two climate indices (SOI, PDO) and sea level height was a significant in 1-year period. PDO and sea level height were anti-phase. Also, our wavelet coherence analysis reveals when sea level height and climate indices were correlated in short (less than one year) and long periods, which did not appear in the cross wavelet transform. The two wavelet analyses provide the frequency domains of two different time domain datasets but also characterize the periodic components and relative phase difference. Therefore, our research results demonstrates that the wavelet analyses are useful to analyze the periodic component of climatic data and monitor the various oceanic phenomena that are difficult to find in time series analysis.

GENERATION OF TOPOGRAPHIC PRODUCTS ON MARS

  • Yoon Jong-suk;Shan Jie
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.683-686
    • /
    • 2005
  • This study addresses a photogrammetric approach to generate Mars topographic products from mapping data of Mars Global Surveyor (MGS). High-resolution stereo images and laser altimetry data collected from the MGS mission are combined and processed to produce Digital Elevation Models (DEM) and orthoimages. First, altimeter data is registered to high resolution images and considerable registration offset (around 325 m) is discovered on high resolution stereo images. Altimetry data, exterior orientation elements of the camera and conjugate points are used for bundle adjustment to solve this mis-registration and detennine the ground coordinates. The mis-registration of altimetry data are effectively eliminated after the bundle adjustment. Using the adjusted exterior orientation the ground coordinates of conjugate points are detennined. A sufficient number of corresponding points collected through image matching and their precise 3-D ground coordinates are used to generate DEM and orthoimages. A posteriori standard deviations of ground points after bundle adjustment indicate the accuracy of OEM generated in this study. This paper addresses the photogrammetric procedure: the registration of altimetry data to stereo pair images, the bundle adjustment and the evaluation, and the generation of OEM and orthoimages.

  • PDF

THE TATAR STRAIT SEA LEVEL SESONAL VARITIONS BY SAT-ELLITE ALTIMETRY DATA

  • Sedaeva, Olga;Romanov, Alexander;Vilyanskaya, Elena;Shevchenko, Georgy
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.844-847
    • /
    • 2006
  • In this work Topex/Poseidon altimeter data 1993 - 2002 were used. There are three altimetry tracks (one ascending and two descending) that cross Tatar Strait. The data were collected in the points of sub-satellite tracks with the step 0.25 degree. 10-years average values were calculated for each month. The seasonal sea level variations were compared with tide gauges data. The well expressed annual cycle (with maximum at July-August and the minimum at February-March) prevails in the Tartar Strait. However, the seasonal variations expressed much weakly in both the altimetry track points and Kholmsk - Nevelsk tide-gauges that locate close to La Perouse Strait because of Okhotsk Sea influence. The sea level slopes between the Sakhalin Island and the continent coasts were analyzed in different seasons. We found that sea level increases near Sakhalin coast in spring and summer that corresponds to the northward flow. In autumn, otherwise, the sea level decreases near Sakhalin Island that corresponds to southward current. This result is verified by the CTD data gathered on the standard sections. Well-expressed upwelling is observed near coastline of Sakhalin Island in fall season. This phenomenon is caused by the northerly and the northwesterly wind which are typical for cold season.

  • PDF