• Title/Summary/Keyword: Alternative conceptions

Search Result 42, Processing Time 0.028 seconds

The Effect of Explanation in Conjunction with Gravity and Density on Students' Alternative Conceptions for Floating and Sinking Phenomena (뜨고 가라앉는 현상에 대해 중력과 밀도를 연계한 설명방식이 학생의 대안개념에 미치는 영향)

  • Kim, Sung-Ki;Kim, Suk-Won;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.3
    • /
    • pp.112-121
    • /
    • 2017
  • The purpose of the study was to investigate the effect of explanation in conjunction with gravity and density on students' alternative conceptions for floating and sinking phenomena. The subjects were 140 students of 11th grade in 4 classes of a high school located in Gangwon Province. We divided them in two groups; comparison and experiment. The students of experiment group learned explanation in confection with gravity and density. The students of comparison group learned explanation of pressure as represented in physics textbook. ANCOVAs (analysis of covariance) were conducted using the pretest as a covariance. In items related to characters of matter, 2 items are not significant and only 1 item has significant small effect size (Hedges' g=0.327). In the change of alternative conceptions, there is no meaningful gap between two group. However, in items related to relative weights between object and water, the all items have significant effect sizes (0.286~0.502). In addition, frequency of experiment group's alternative conceptions related to pressure decreases considerably, but comparison group does not. Therefore, the explanation in conjunction with gravity and density suggested in this study can decrease students' alternative conceptions related to floating and sinking phenomena and increase scientific conceptions.

Development and Application of a Conceptual Change Model for Effective Laboratory Teaching (효과적인 실험 수업을 위한 개념 변화 수업모형의 개발 및 적용)

  • Noh, Tae-Hee;Kang, Suk-Jin;Kim, Hye-Kyung;Chae, Woo-Ki;Noh, Suk-Goo
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.2
    • /
    • pp.179-189
    • /
    • 1997
  • In this study, a conceptual change model for effective laboratories was developed and its instructional effect on students' achievement, the acquisition of scientific conceptions, and the attitudes toward science was investigated. Considering several conceptual change models in literature and Korean educational situations, the conceptual change model was developed. The model consists of 5 stages; preliminary, prediction, exploration, consolidation and reconstruction, and application. The treatment and control groups (2 classes) were selected from a middle school in Seoul, and taught about the changes of states, density, and dissolution for three weeks. Prior to instruction, the Group Assessment of Logical Thinking and the Learning Approach Questionnaire were administered, and their scores were used as covariate and / or blocking variable. To examine students' alternative conceptions before the instructions, a pre-conceptions test was also administered. After the instructions, students' achievement, the acquisition of scientific conceptions, and the attitudes toward science were measured with a researcher-made achievement test, a post-conceptions test, and the subtests of the Test of Science-Related Attitudes, respectively. The results indicated that the score of the treatment group was significantly higher than that of the control group in the post-conceptions test. The students in the treatment group had also less alternative conceptions than those in the control group. However, there were no significant differences for the achievement and the attitudes toward science. Educational implications are discussed.

  • PDF

The Analysis of High School Students' Conceptions on Plate Tectonics (고등학생들의 판 구조론에 대한 개념 분석)

  • Lee, Mi-Suk;Jeong, Jin-Woo;Kim, Hyoungbum
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.484-497
    • /
    • 2014
  • This study aimed to investigate high school students' conceptions of plate tectonics. Seventy students (N=70) in their 2 year of high schools in the province of Chungcheong-do participated in this study, and they took a conception test of visual representation. We conducted a semi-structured interview with 10 volunteering participants out of seventy. After learning about the concept of plate tectonics, this study found that participants ended up having alternative conceptions relating to terminology, meaning of colors, plates' movement, plates' boundaries, position and cause of melting, mantle's physical conditions, and driving forces of plate motion. The conceptions that the participants held after class were organically related, which included the meaning of colors, mantle's physical characteristic, and driving forces of plate movement. In addition, the visual representation used for teaching plate tectonics influenced the students' understanding about terminologies, plates' boundaries, position of melting, and the physical characteristic of mantle. The study found that there were the factors of visual representation that caused the learners to create alternative conceptions in learning about plate tectonics.

The Effect of an Alternative Experiment for the Formation of Student's Conceptions about the Magnetic Fields of a Permanent Magnet by Cognitive Styles (초등학교 학생들의 자기장 개념 분석과 인지양식의 차이에 따른 대안실험의 효과)

  • Oh, Kwang-Tek;Youn, Suk Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.5
    • /
    • pp.159-167
    • /
    • 2016
  • We have examined the perceptions of 6th grade elementary school students' conceptions on the magnetic fields of a permanent magnet by cognitive style. Students' conceptions on the magnetic fields of permanent magnet after the iron powder experiment are grouped into four models; Partial Distribution Model (PDM), Pole Separation Model (PSM), Homogeneous Distribution Model (HDM), and Field Model (FM). After the experiment to observe the magnetic field of the permanent magnet with compass, the students' conceptions are grouped into three models; Pole Separation Model (PSM), Complex Homogeneous Distribution Model (CHDM), and Field Model (FM). And after the application of the alternative experimental method to observe the magnetic field with only one compass, students' conceptions on magnetic field has been enhanced in both field-dependent and general-cognitive groups of students.

Alternative Conceptions of High School Students about the Crust and Interior of the Earth (지각과 지구 내부에 대한 고등학생들의 대안 개념)

  • Jeong, Ku-Song;Jeong, Jin-Woo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.266-276
    • /
    • 2007
  • This purpose of this study was to analyze high school students' alternative conceptions and understanding levels about rocks, crust, plate tectonics and interior of the Earth. Data were collected through surveys, drawing assignments, and interviews. A total of 158 high school students in the first grade were involved in this study. The results showed that students have lots of major alternative conceptions which are meaning and forming process of rock, distinction of continental crust and ocean crust, formation and disappearance of ocean crust, movement of plate, continental drift, activities of volcano and earthquake. Physical and chemical characteristics, including mantle and core state could be found through analyzing from drawings.

Investigation of High School Students' Mental Models about the Earth's Interior (지구 내부에 대한 고등학교 학생들의 정신모형 탐색)

  • Jeong, Ku-Song
    • Journal of the Korean earth science society
    • /
    • v.28 no.6
    • /
    • pp.645-654
    • /
    • 2007
  • The purpose of this study was to investigate students' mental models and alternative conceptions about the Earth's interior. A total of 126 10th grade students participated in this study. They were requested to draw Earth's interior tasks and were interviewed about their mental models. A coding frame was designed to classify the students' drawings and interview responses, and then a four step cognitive model was established based on the frame of coding. In addition, the relationship of mental models was compared in terms of students' gender, and the type of alternative conceptions was analysed. The research results showed a variety of alternative conceptions on the interior of the Earth. The classified mental models showed naive mental model (11%), unstable mental model (81%), conceptual model (8%), while 69% of all sampled students accounted for the static process. The gender difference in the cognitive model showed no statistical significance.

Students' Alternative Conceptions in Biology Education Proposed by Biology Teachers. (교사들이 제시한 학생들의 생물 오개념)

  • Chung, Wan-Ho;Cha, Hee-Young;Choi, Jin-Bok
    • Journal of The Korean Association For Science Education
    • /
    • v.12 no.1
    • /
    • pp.23-33
    • /
    • 1992
  • For the purpose of identifying alternative conceptions in biology held by both elementary and secondary school students, an open-ended questionnaire in the six areas of biology was devised and administered to both 21 elementary school science teachers and 32 secondary biology teachers. Results have Shown that 65 and 183 items were introduced by elementary and secondary school teachers respectively Our findings will be useful to many researchers who have concerned about the issus of misconceptions in biology as well as many biology teachers who have had difficulties in biology teaching due to students' preconceptions.

  • PDF

A Study of Kindergarden, Elementary, and Middle School Students' Conception Types and Trend of Grade Related to Evaporation and Conditions of Evaporation Activities (증발과 증발 조건에 관한 활동에서 유.초.중학교 학생들의 개념 유형 및 학년별 경향성에 관한 연구)

  • Cho, Boo-Kyung;Ko, Young-Mi;Kim, Hyo-Nam;Paik, Seong-Hey;Park, Jae-Won;Park, Jin-Ok;Im, Myoung-Hyuk
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.2
    • /
    • pp.286-298
    • /
    • 2002
  • This study was to investigate the K-8 grade students' conception types and trend of grade related to evaporation and conditions of evaporation activities. Twenty-five students were random sampled and they were interviewed in-depth during designed activities related to evaporation and conditions of evaporation. The data were analyzed qualitatively. The students' conceptions related to evaporation activities were divided into 5 types. The conceptions related to conditions of evaporation were divided into 5 types, too. Students' conceptions gradually changed to scientific conceptions with grade. But alternative conceptions were continued also.

A Study of High School Students' Conceptions for Density (고체와 액체의 밀도에 대한 고등학생들의 개념 조사)

  • Cho, In-Young;Kang, Young-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.809-817
    • /
    • 2010
  • The primary purpose of this study was to investigate high school students' conceptual understanding of density for solids and liquids in pure and mixed substances who had preceded formal school science instruction on density and related topics. A concept assessment on density was developed and administered by demonstrative experiments accompanied by a written assessment test method to 120 general high school students in a metropolitan city. The scientific conceptions and alternative conceptions from students' responses were identified and the percentages of them were calculated. Then, their alternative conceptions and implicit theories on density were analyzed. About half of the students couldn't differentiate weight-volume-density and regarded density as an innate property of matter. Furthermore, the greater the number of variables involved in an experimental condition of the question, the more complicated and undifferentiated students' density concepts were. Students employed more improper variables such as particle size, intermolecular distance, surface tension, polarity of the solvent, etc. in explaining counter-intuitive observations. The implications for school science instruction were discussed.

Elementary School Students' Arguments on Causes of Phases of the Moon and Concept Analysis (달의 위상변화 원인에 대한 초등학생들의 논증과 개념 분석)

  • Kim, Youngdae
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.10 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • The purpose of this study is to characterize students' conceptions on causes of the phases of the moon. For this purpose, students were given a worksheet for argumentative writing activity where in they need to choose the right answer between five statements and provide reasonable evidences about causes of the phases of the moon. Written arguments collected were used as analysis data and TAP(Toulmin's argument pattern) including conceptual analysis of TAP elements were utilized to figure out logical structures and subordinate conceptions. The result showed that students had various alternative concepts about causes of the phases of the moon and associated with celestial. Also 70.5% of subjects had incomplete argument structures, and error types of concepts had difference according to types of alternative concepts as well as TAP. These results mean that importance of checking students' preconceptions, need of scientific argumentation, and appropriate instructional strategies considering alternative conception types and fallacy types that students had.