• Title/Summary/Keyword: Alternative cleaning solvent

Search Result 9, Processing Time 0.022 seconds

Study on the Cleaning Screen Printing using Alternative Cleaning Solvent of 1,1,1-TCE, CFC-113 (1,1,1-TCE, CFC-113 대체세정제를 이용한 스크린인쇄 세정연구)

  • Lee, Ki-Chang;Yoon, Cheol-Hun;Hwang, Sung-Kwy;Oh, Se-Young;Lee, Seok-Woo;Ryu, Jung-Wok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • The field of printing use to pressurization ink using screen gassamer that is called screen printing. Existing cleaning solvent using screen printing are the organic solvents including aromatic compounds carried with poisonous and stench. Besides, cleaning method of current screen printing are for the most part mixed cleaning method of dipping and polish. Using 1,1,1-TCE, CFC-113 alternative system cleaning solvent be substituted for existing cleaning solvent against screen printing ink measured the cleaning efficiency according to gravimetric analysis method and property change of gassamer according to Image Analyzer. Also, Cleaning process system carry with excellent cleaning efficiency studied which was proposed new cleaning process including ultrasonic and vibration cleaning process be substituted for existing mixed cleaning method of dipping and polish.

The Optimum Cleaning Process of Non-aqueous Alternative Solvents for 1,1,1-TCE (1,1,1-TCE에 대한 비수계성 대체세정제의 최적 세정공정)

  • Jung, Duck-Chae;Lee, Ki-Chang;Kong, Seung-Dae;Mok, Gab-Young;Lee, Seok-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.237-240
    • /
    • 1999
  • This study showed that the optimized cleaning process using non-aqueous cleaning solvents is adaptable in the industrial field for existing 1.1.1-TCE cleaning solvents which is an ozone depleting sustance. Alternative cleaning solvent system substituted for existing cleaning solvent against non-aqueous pollutants(cutting & flux oil), was evaluated for the cleaning efficiency using gravimetric analysis method and surface change of sample by Image analyzer. The results showed that alternative solvents and process had excellent cleaning efficiency.

A Study on Optical Analysis and Overprinting Sequence in 2-Color Solid Overprints (2색 중첩 민인쇄의 광학적 해석과 중첩인쇄 순서에 관한 연구)

  • 강상훈
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.15 no.2
    • /
    • pp.1-4
    • /
    • 1997
  • Existing cleaning solvent using screen printing are the organic solvents including aromatic compounds carried with poisonous and stench. besides, Cleaning method of current screen printing are for the most part mixed cleaning method of dipping and polish. Using 1,1,1-TCE, CFC-113 alternative system cleaning solvent be substituted for existing cleaning solvent against screen printing ink measured the cleaning efficiency according to gravimetric analysis method and property change of gassamer according to Image Analyzer. Also, Cleaning process system carry with excellent cleaning efficiency studied which was proposed new cleaning process including ultrasonic cleaning process be substituted for existing mixed cleaning method of dipping and polish.

  • PDF

Comparison of Physical Properties of CFC Alternative Cleaning Solvents (CFC 대체세정제의 물성 비교)

  • Row, Kyung Ho;Lee, Youn Yong
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.65-75
    • /
    • 1993
  • A number of alternative cleaning solvents to CFC 113 which was identified as a ozone-depleting meterial were collected to measure their experimental physecal properties of density, surface tension, Refractive Index, boiling point, pH, viscosity, flash point, and soltbility. They might be classified as aqueous, simi-aqeous, alcohol ketone, and halogen cleaning solvents. The solubilities of abietic acid, a major component of flux used in PCB (Printed Circuit Board) of the electronic indystry, into the cleaning solvents including CFC 113 were determined for comparison. The assorted cleaning solvents have their own advantages and disadvantages. Therefore a end-user carefully needs to choose the best-fit cleaning solvent after the safety, stability, and economics as well as the effectiveness by physical properties of the alternative cleaning solvents are integratedly considered.

  • PDF

Comparison of Cleaning Performance of CFC 113 and the Alternatives (CFC 113과 대체세정제의 세정성능 비교)

  • Row, Kyung Ho;Choi, Dai-Ki;Lee, Youn Yong
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.521-530
    • /
    • 1993
  • According to the Montreal Protocol, CFC 113, one of the ozone-depleting substances, will be prohibited to use as a cleaning solvent essentially in the electronic industry. Therefore, the development of the alternative cleaning solvents to CFC 113 is being accelerated. A number of the alternative cleaning solvents are avialable on the market. The alternatives of Axarel 32(DuPont), Cleanthru 750H(KAO Chemical), and EC-Ultra(Petroferm) are chosen for the comparison of cleaning performance with CFC 113. The test methods for measuring the cleaning performance were composed of the measurement of the physical properties, the experiments on the material compatibility with cleaning solvents, the measurement of the evaporation rate, and finally the experiments of the removal efficiency. Normally the basic physical properties of the alternatives had higher boiling points, viscosity and surface tension, which were quite different to those of CFC 113. In terms of solubility of rosin-based flux, the solubilities of abietic acid (nonpolar organic) were similar, but those of the activator (polar organic) in the alternatives were better than CFC 113. The evaporation of the alternatives was very slow, compared to CFC 113, which had much lower boiling point. All the cleaning solvents showed the good material compatibility with FR4 and Cu-coated PCB. The better removal efficiencies of abietic acid were obtained when using the ultrasonic mechanical energy over the dipping method. The experiments also indicated the very slow-eavaporating solvent was not desirable with the dipping cleaning method, and the differences in the removal efficiency of the alternatives with the ultrasonic cleaning method were negligible. Among the alternatives, the overall cleaning performances were obsorved as almost similar. Before selecting the ultimate cleaning solvent, the application of cleaning machine, environmental issues, and economics are simultaneously considered with the cleaning performance.

  • PDF

Detergency improvement of hydrophilic soils in dry cleaning process (드라이클리닝 시 친수성 오구의 세탁성 향상을 위한 연구)

  • Kwak, Soo-Kyoung;Sang, Jeong Seon;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.4
    • /
    • pp.213-220
    • /
    • 2019
  • The dry cleaning effect related to the type of soil and fiber was analyzed using silicone and alcohol-based solvents(ethyl alcohol, isopropyl alcohol, acetone) that are relatively safe for the human body and environment to improve the detergency of hydrophilic soils in dry cleaning system. Based on this analysis, an effective dry cleaning method to be carried out for improving the detergency according to the type of hydrophilic soils. After dry cleaning was performed using 20 types of artificial soiled fabrics consisting of 7 types of fibers and 4 types of hydrophilic soils, the detergency was measured and the results were compared and analyzed by solvents and fiber types. The results are presented as follows; first, the detergency of hydrophilic soils using silicone solvents showed a low rate of detergency. In particular, the tannin soil showed a lower level of detergency compared to the protein soil. Second, the detergency of hydrophilic soils using silicon solvents with dry soap differed in some detergency according to the soil and fiber types. Especially, the detergency of curry soil on cotton fabric showed significant improvement. Third, the protein soil was not removed from dry cleaning using alcohol-based solvents, but the effect of dry cleaning of curry soil on both cotton and polyester fabric was substantially improved. As a result, the elimination of blood soil is more effective in silicon solvents than in alcohol-based solvents. The removal of tannin soils may improve detergency by adding dry soap to silicon solvents or by using alcohol-based solvents as alternative solvents. The use of alternative solvents such as silicon and alcohol solvents can contribute to the environmental improvement of the dry cleaning industry, which uses petroleum-based solvents. It is also expected to provide consumers with the opportunity to choose eco-friendly and efficient dry cleaning methods.

Cleaning efficiency for Alternative cleaning solvent of Screen printing (스크린 인쇄에서의 대체세정제에 대한 세정효율)

  • 김재해
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.15 no.2
    • /
    • pp.117-130
    • /
    • 1997
  • Studies have been conducted to explore thermal imidization of polyamic acid. Aromatic polyimides are well recognized as high temperature linear polymers, and polyimide are used as structural materials, fibers, and adhesive. Two different kinds of polyimide were prepared by theimidization of polyamic acid which were synthesized from 2,2-bis[4-(4-aminophenoxy)phenyl]- hexafluoropropane, 2,2-bis [4-(4-aminophenxy)phenyl] - hexamethylpropane and caprolactam and pyromelliti dianhydride under N-Methly-pyrrolidinone solvent. Polyamic acids were converted to polyimides containing imide bond by thermal imidization. The weight 50% loss temperatures of polyimide by TGA thermogram were recorded in the range of 700 ~ 720$^{\circ}$C in nitrogen gas. According, as a results, we conclued polyamic acid were cycliation after H2O molecule separationed, and this polyimide film could be used for Printed Circuit Boand.

  • PDF

Ultra Dry-Cleaning Technology Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 초순수 건식 세정기술)

  • Joung, Scung Nam;Kim, Sun Young;Yoo, Ki-Pung
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.13-25
    • /
    • 2001
  • With fast advancement of fine machineries and semiconductor industries in recent decades, the ultra-cleaning of organic chemicals, submicron particles from contaminated unit equipments and products such as silicon wafers becomes one of the most important steps for further advancement of such industries. To date, two kinds of ultra cleaning techniques are used; one is the wet-cleaning and the other is the dry cleaning. In case of wet cleaning, removal of organic contaminants and submicron particles is made by DIW with additives such as $H_2O_2$, $H_2SO_4$, HCl, $NH_4OH$ and HF, etc. While the wet cleaning method is most widely adopted for various occasions, it is inevitable to discharge significant amount of toxic waste waters in environment. Dry cleaning is an alternative method to mitigate environmental pollution of the wet cleaning with maintaining comparable degree of cleaning to the wet cleaning. Although there are various concept of dry cleaning have been devised, the dry cleaning with environmentally-benign solvent such as carbon dioxide proven to show high degree of cleaning from the contaminated porous surface as well as from the bare surface. Thus, special global attention has been placing on this technique since it has important advantages of simple process schemes and no environmentally concern, etc. Thus, this article critically reviews the state-of-the-art of the supercritical fluid drying with emphasis on the thermo-physical characteristics of the supercritical solvent, environmental gains compared to other dry cleaning methods, and the generic aspects of the basic design and processing engineering.

  • PDF

Depurination of Nucleosides and Calf Thymus DNA Induced by 2-Bromopropane at the Physiological Condition

  • Sherchan, Jyoti;Choi, Ho-Young;Lee, Eung-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2309-2317
    • /
    • 2009
  • Depurination, the release of purine bases from nucleic acids by hydrolysis of the N-glycosidic bond, gives rise to alterations of the cell genome. Though cells have evolved mechanisms to repair these lesions, unrepaired apurinic sites have been shown to have two biological consequences: lethality and base substitution errors. 2-Bromopropane (2-BP) is used as an intermediate in the synthesis of pharmaceuticals, dyes, and other organics. In addition, 2-BP has been used as a replacement for chloroflurocarbons and 1,1,1-trichloroethane as a cleaning solvent in electronics industry. However, 2-BP was found to cause reproductive and hematopoietic disorders in local workers exposed to it. Owing to the toxicity of 2-BP, there has been a tendency to use 1-BP as an alternative cleaning solvent to 2-BP. However, 1-BP has also been reported to be neurotoxic in rats. Though $N^7$-guanine adduct of 2-BP has been reported previously, massive depurination of the nucleosides and calf thymus DNA was observed in this study. We incubated the nucleosides (ddG, dG, guanosine, ddA, dA and adenosine) with excess amount 2-BP at the physiological condition (pH 7.4, $37\;{^{\circ}C}$), which were analyzed by HPLC and LC-MS/MS. In addition, the time and dose response relationship of depurination in nucleosides induced by 2-bromopropane at the physiological condition was investigated. Similarly, incubation of calf-thymus DNA with the excess amount 2-BP at the physiological condition was also performed. In addition, the time and dose response relationship of depurination in calf-thymus DNA induced by 2-BP at the physiological condition was investigated. Those results suggest that the toxic effect of 2-BP could be both from the depurination of nucleosides and DNA adduct formation.