• Title/Summary/Keyword: Alternating Technique.

Search Result 100, Processing Time 0.02 seconds

Effect of Alternating Magnetic Field on Ion Activation in Low Temperature Polycrystalline Silicon Technology

  • Hwang, Jin Ha;Lim, Tae Hyung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2004
  • Statistical design of experiments was successfully employed to investigate the effect of alternating magnetic field on activation of polycrystalline Si (p-Si) doped as n-type using $\textrm{PH}_3$, by full factorial design of three factors with two levels. In this design, the input variables are graphite size, alternating current, and activation time. The output parameter, sheet resistance, is analyzed in terms of the primary effects and multi-factor interactions. Notably, the three-factor interaction is calculated to be a dominant interaction. The interaction between graphite size and activation time and the main effect of current are important effects compared to the other variables and relevant interactions. Alternating magnetic flux activation is proved a significantly beneficial processing technique.

  • PDF

Static Chaos Microfluid Mixers Using Alternating Whirls and Laminations (미소블록에 의한 교차 회전유동과 미소유로에 의한 박층유동을 이용한 정적 혼돈 미소유체 혼합기에 관한 연구)

  • Chang, Sung-Hwan;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1549-1556
    • /
    • 2004
  • We have deigned, fabricated and compared four different types of static chaos microfluid mixers, including the mixers using straight channel flow, microblock-induced alternating whirl flow, microchannel-induced lamination flow, and combined alternating whirl-lamination flow. Among them, the alternating whirl-lamination (AWL-type) mixer, composed of 3-D rotationally arranged microblocks and dividing microchannels fabricated by conventional planar lithography process, is effective to reduce the mixing length over wide flow rate ranges. We characterize the performance of the fabricated mixers, through the flow visualization technique using phenolphthalein solution. We verify that the AWL-type microfluid mixer shows the shortest fluid mixing length of 2.8mm∼5.8mm for the flow rate range of Re=0.26∼26 with the pressure drop lower than 5kPa. Compared to the previous mixers, requiring the mixing lengths of 7∼17mm, the AWL-type microfluid mixer results in the 60% reduction of the mixing lengths. Due to the reduced mixing lengths within reasonable pressure drop ranges, the present micromixers have potentials for use in the miniaturized Micro-Total-Analysis-Systems($\mu$TAS).

Optical Misalignment Cancellation via Online L1 Optimization (온라인 L1 최적화를 통한 탐색기 비정렬 효과 제거 기법)

  • Kim, Jong-Han;Han, Yudeog;Whang, Ick Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1078-1082
    • /
    • 2017
  • This paper presents an L1 optimization based filtering technique which effectively eliminates the optical misalignment effects encountered in the squint guidance mode with strapdown seekers. We formulated a series of L1 optimization problems in order to separate the bias and the gradient components from the measured data, and solved them via the alternating direction method of multipliers (ADMM) and sparse matrix decomposition techniques. The proposed technique was able to rapidly detect arbitrary discontinuities and gradient changes from the measured signals, and was shown to effectively cancel the undesirable effects coming from the seeker misalignment angles. The technique was implemented on embedded flight computers and the real-time operational performance was verified via the hardware-in-the-loop simulation (HILS) tests in parallel with the automatic target recognition algorithms and the intra-red synthetic target images.

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY

  • Kwon, Oh-In;Seo, Jin-Keun;Woo, Eung-Je;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.519-541
    • /
    • 2001
  • Magnetic Resonance Electrical Impedance Tomography(MREIT) is a new medical imaging technique for the cross-sectional conductivity distribution of a human body using both EIT(Electrical Impedance Tomography) and MRI(Magnetic Resonance Imaging) system. MREIT system was designed to enhance EIT imaging system which has inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. MREIT utilizes a recent CDI (Current Density Imaging) technique of measuring the internal current density by means of MRI technique. In this paper, a mathematical modeling for MREIT and image reconstruction method called the alternating J-substitution algorithm are presented. Computer simulations show that the alternating J-substitution algorithm provides accurate high-resolution conductivity images.

  • PDF

Effects of Alternating Magnetic Field Assisted Annealing of Pentacene Film for Organic Thin Film Transistor Applications

  • Park, Jae-Hoon;Choi, Jong-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.32-35
    • /
    • 2007
  • In this article, a novel annealing technique using alternating magnetic field (AMF) is adopted to improve the electrical characteristics of pentacene film, thereby enhancing the performance of pentacene-based organic thin film transistors (OTFTs). According to the investigation results, the electrical conductivity in the pentacene film could be increased from 0.32 to 1.18 S/cm by annealing the pentacene film using AMF. And also, OTFTs with the pentacene film annealed by AMF exhibited an improved performance compared to the device without annealing. These results suggest that an annealing using AMF can be an effective method to improve the performance of devices based on organic semiconductors.

An Efficient Implementation of Optimal Power Flow using the Alternating Direction Method (Alternating Direction Method를 이용한 최적조류계산의 분산처리)

  • Kim, Ho-Woong;Park, Marn-Kuen;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1424-1428
    • /
    • 1999
  • This paper presents a mathematical decomposition coordination method to implementing the distributed optimal power flow (OPF), wherein a regional decomposition technique is adopted to parallelize the OPT. The proposed approach is based on the Alternating Direction Method (ADM), a variant of the conventional Augmented Lagrangian approach, and makes it possible the independent regional AC-OPF for each control area while the global optimum for the entire system is assured. This paper is an extension of our previous work based on the auxiliary problem principle (APP). The proposed approach in this paper is a completely new one, however, in that ADM is based on the Proximal Point Algorithm which has long been recognized as one of the attractive methods for convex programming and min-max-convex-concave programming. The proposed method was demonstrated with IEEE 50-Bus system.

  • PDF

Symmetric-viewing liquid crystal display with alternating alignment layers in an inverse-twisted-nematic configuration

  • Na, Jun-Hee;Li, Hongmei;Park, Seung-Chul;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.191-194
    • /
    • 2011
  • A symmetric-viewing inverse-twisted-nematic (ITN) liquid crystal display (LCD) with alternating alignment layers was developed using a stamping-assisted rubbing (SAR) technique. A patterned layer of a fluorinated acrylate polymer was transferred onto the first rubbed vertical-alignment layer prepared on a substrate by stamping. The fluorinated acrylate polymer provided a protective layer covering the first rubbed alignment layer during the second rubbing process, which promoted the vertical alignment of the LC molecules. The LC cell in the ITN geometry with two orthogonally rubbed alignment layers showed symmetric-viewing characteristics with fourfold symmetry. The SAR technique was shown to be a mask-free alignment method of producing multidomains for symmetric-viewing LCDs.

A Singularity in a Trimaterial with Two Concentric Circular Inclusions (두 개의 동심 원형 개재물을 가지는 삼종 재료에서의 특이성)

  • Lee, T.G.;Choi, S.T.;Lee, K.W.;Earmme, Y.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.170-175
    • /
    • 2000
  • Bimaterial containing an in-plane or an out-of-plane singularity embedded in the inclusion or in the unbounded matrix is first analyzed by using analytic continuation. Next, the series forms of solutions for the trimaterial with two concentric circular inclusions having an identical singularity are found based on an alternating technique using the solution for the bimaterial case. The sum of the first three or four terms of solutions derived provides an excellent approximation for most of material combinations. By applying continuous distributions of dislocations, the trimaterial solution obtained in this study may be used to solve crack problems in the same material.

  • PDF

Fabrication of the Acceleration Sensor Body of Glass by Powder Blasting (미립분사가공을 이용한 유리 소재의 가속도 센서 구조물 성형)

  • Park, Dong-Sam;Kang, Dae-Kyu;Kim, Jeong-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.146-153
    • /
    • 2006
  • Acceleration sensors have widely been used in the various fields of industry. In recent years, micromachining accelerometers have been developed and commercialized by the micromachining technique or MEMS technique. Typical structure of such sensors consist of a cantilever beam and a vibrating mass fabricated on Si wafers using etching. This study investigates the feasibility of powder blasting technique for microfabrication of sensor structures made of the pyrex glass alternating the existing Si based acceleration sensor. First, as preliminary experiment, effect of blasting pressure, mass flow rate of abrasive and no. of nozzle scanning on erosion depth of pyrex and soda lime glass is studied. Then the optimal blasting conditions are chosen for pyrex sensor. Structure dimensions of designed glass sensor are 2.9mm and 0.7mm for the cantilever beam length and width and 1.7mm for the side of square mass. Mask material is from aluminium sheet of 0.5mm in thickness. Machining results showed that tolerance errors of basic dimensions of glass sensor ranged from 3um in minimum to 20um in maximum. This results imply the powder blasting can be applied for micromachining of glass acceleration sensors alternating the exiting Si based sensors.

Particle Loss Reduction Technique Using Dielectrophoresis in Microfluidic Channel (유전영동을 이용한 미세유체채널 내부의 입자 손실 저감 기술)

  • Kang, Dong-Hyun;Kim, Min-Gu;Kim, Yong-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.357-362
    • /
    • 2011
  • This paper demonstrates a novel electrodynamic technique to remove particles from the wall of microchannels. Dielectrohporesis(DEP) is generated by applying alternating electric potentials to the interdigitated electrodes integrated at the bottom of the micro-channel. The proposed technique is applied to a general microfluidic channel as a feasibility test. To examine the wall loss reduction efficiency, 10 ${\mu}m$ diameter Polystyrene latexes(PSL) were supplied to the inlet of the device. Then, the concentration of collected particles through devices was measured. In the experiment for 10 ${\mu}m$ diameter PSL particles, the concentration of the injected particles was $174.25{\times}10^4$ particles/ml. However, the concentration of collected particles at the outlet was $52.25{\times}10^4$ particles/ml. Only 30 % of particles had arrived at the outlet and 70 % of particles had adhered to the wall of the microfluidic channel. By applying alternating electric potentials from 0 to 20 $V_{pp}$ at 3 MHz, the concentration of injected particles was 135.00${\times}10^4$ particles/ml, the concentration of collected particles was increased as $105.25{\times}10^4$ particles/ml at 20 $V_{pp}$ at the outlet. When the electric potential was 20 $V_{pp}$, the particle loss was decreased by 39 % (initial loss: 70 %, loss at 20 Vpp: 31 %) with 10 ${\mu}m$ particle. The particle loss was decreased along to the incensement of electric potentials and the enlargement of the diameter of particles. According to these measured results, it was confirmed that the proposal of using DEP technique could be a good candidate for particle loss reduction in micro-particle processing chip application. Moreover, it is expected that the proposed technique could enhance performance of microfluidic and biochip devices.