• 제목/요약/키워드: Alternate load path method

검색결과 11건 처리시간 0.019초

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

Effect of connection stiffness on the earthquake-induced progressive collapse

  • Ali, Seyedkazemi;Mohammad Motamedi, Hour
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.503-515
    • /
    • 2022
  • Global or partial damage to a structure due to the failure of gravity or lateral load-bearing elements is called progressive collapse. In the present study, the alternate load path (ALP) method introduced by GSA and UFC 4-023-03 guidelines is used to evaluate the progressive collapse in special steel moment-resisting frame (SMRF) buildings. It was assumed that the progressive collapse is due to the earthquake force and its effects after the removal of the elements still remain on the structures. Therefore, nonlinear dynamic time history analysis employing 7 earthquake records is used to investigate this phenomenon. Internal and external column removal scenarios are investigated and the stiffness of the connections is changed from semi-rigid to rigid. The results of the analysis performed in the OpenSees program show that the loss of the bearing capacity of an exterior column due to a seismic event and the occurrence of progressive collapse can increase the inter-story drift of the structure with semi-rigid connections by more than 50% and make the structure unable to satisfy the life safety performance level. Furthermore, connection stiffness severely affects the redistribution of forces and moments in the adjacent elements of the removed column.

Evaluation of Progressive Collapse Resisting Capacity of Tall Buildings

  • Kwon, Kwangho;Park, Seromi;Kim, Jinkoo
    • 국제초고층학회논문집
    • /
    • 제1권3호
    • /
    • pp.229-235
    • /
    • 2012
  • In this paper the progressive collapse potential of building structures designed for real construction projects were evaluated based on arbitrary column removal scenario using various alternate path methods specified in the GSA guidelines. The analysis model structures are a 22-story reinforced concrete moment frames with core wall building and a 44-story interior concrete core and exterior steel diagrid structure. The progressive collapse resisting capacities of the model structures were evaluated using the linear static, nonlinear static, and nonlinear dynamic analyses. The linear static analysis results showed that progressive collapse occurred in the 22-story model structure when an interior column was removed. However the structure turned out to be safe according to the nonlinear static and dynamic analyses. Similar results were observed in the 44-story diagrid structure. Based on the analysis results, it was concluded that, compared with nonlinear analysis procedures, the linear static method is conservative in the prediction of progressive collapse resisting capacity of building structure based on arbitrary column removal scenario.

Study on failure mechanism of multi-storeyed reinforced concrete framed structures

  • Ahmed, Irfan;Sheikh, Tariq Ahmad;Gajalakshmi, P.;Revathy, J.
    • Advances in Computational Design
    • /
    • 제6권1호
    • /
    • pp.1-13
    • /
    • 2021
  • Failure of a Multi-storeyed reinforced concrete framed structure occurs when a primary vertical structural component is isolated or made fragile, due to artificial or natural hazards. Load carried by vertical component (column) is transferred to neighbouring columns in the structure, if the neighbouring column is incompetent of holding the extra load, this leads to the progressive failure of neighbouring members and finally to the failure of partial or whole structure. The collapsing system frequently seeks alternative load path in order to stay alive. One of the imperative features of collapse is that the final damage is not relative to the initial damage. In this paper, the effect on the column and beam adjacent to statically removed vertical element in terms of axial force, shear force and bending moment is investigated. Using Alternate load path method, numerical modelling of two dimensional one bay, two bay with variation in storey heights are analysed with FE model in order to obtain better understanding of failure mechanism of multi-storeyed reinforced concrete framed structure. The results indicate that the corner column is more susceptible to progressive collapse when compared to middle column, using this simplified methodology one can easily predict how the structure can be made to stay alive in case of sudden failure of any horizontal or vertical structural element before designing.

비선형정적해석 절차를 이용한 선형정적 연쇄붕괴 대체경로 해석방법 개발 (Development of Linear Static Alternate Path Progressive Collapse Analysis Procedure Using a Nonlinear Static Analysis Procedure)

  • 김진구;박새로미;서영일
    • 한국전산구조공학회논문집
    • /
    • 제24권5호
    • /
    • pp.569-576
    • /
    • 2011
  • 본 논문에서는 비선형정적해석 방법을 이용하여 기존의 연쇄붕괴 선형정적해석 절차에 수반되는 반복과정을 자동으로 수행하면서도 선형해석 결과와 동일한 결과를 나타내는 새로운 연쇄붕괴 해석절차를 제안하였다. 제안된 해석절차는 GSA 기준에 규정된 기존 선형정적해석법의 단점인 반복적 해석작업 및 그 과정에서 발생할 수 있는 시간과 오류의 가능성을 최소화하여 해석결과의 신뢰성을 확보가 있는 선형정적해석 절차이다. 제안된 해석절차를 검증하기 위하여 철근콘크리트 모멘트골조 및 철골 가새골조의 최하층 기둥부재를 제거한 후 기존 해석법과 제안 해석법을 적용하고 그 결과를 비교 분석하였다. 해석결과에 따르면 제안된 해석절차는 구조물의 붕괴여부의 판정 및 힌지 분포에 있어서 기존의 선형정적해석과 동일한 결과를 나타내었으며, 반복해석 과정이 불필요하므로 기존 해석법에 비하여 매우 짧은 시간에 해석을 수행할 수 있는 것으로 나타났다.

Dynamic Increase factor based on residual strength to assess progressive collapse

  • Mashhadi, Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.617-624
    • /
    • 2017
  • In this study, a new empirical method is presented to obtain Dynamic Increase Factor (DIF) in nonlinear static analysis of structures against sudden removal of a gravity load-bearing element. In this method, DIF is defined as a function of minimum ratio of difference between maximum moment capacity ($M_u$) and moment demand ($M_d$) to plastic moment capacity ($M_p$) under unamplified gravity loads of elements. This function determines the residual strength of a damaged building before amplified gravity loads. For each column removal location, a nonlinear dynamic analysis and a step-by-step nonlinear static analysis are carried out and the modified empirical DIF formulas are derived, which correspond to the ratio min $[(M_u-M_d)/M_p]$ of beams in the bays immediately adjacent to the removed column, and at all floors above it. Therefore, the new DIF can be used with nonlinear static analysis instead of nonlinear dynamic analysis to assess the progressive collapse potential of a moment frame structure. The proposed DIF formulas can estimate the real residual strength of a structure based on critical member.

Modeling of RC Frame Buildings for Progressive Collapse Analysis

  • Petrone, Floriana;Shan, Li;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.1-13
    • /
    • 2016
  • The progressive collapse analysis of reinforced concrete (RC) moment-frame buildings under extreme loads is discussed from the perspective of modeling issues. A threat-independent approach or the alternate path method forms the basis of the simulations wherein the extreme event is modeled via column removal scenarios. Using a prototype RC frame building, issues and considerations in constitutive modeling of materials, options in modeling the structural elements and specification of gravity loads are discussed with the goal of achieving consistent models that can be used in collapse scenarios involving successive loss of load-bearing columns at the lowest level of the building. The role of the floor slabs in mobilizing catenary action and influencing the progressive collapse response is also highlighted. Finally, an energy-based approach for identifying the proximity to collapse of regular multi-story buildings is proposed.

Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion on the global response

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.421-445
    • /
    • 2010
  • In this paper the formulation of an efficient frame element applicable for nonlinear analysis of 3D reinforced concrete (RC) frames is outlined. Interaction between axial force and bending moment is considered by using the fibre element approach. Further, section warping, effect of normal and tangential forces on the torsional stiffness of section and second order geometrical nonlinearities are included in the model. The developed computer code is employed for nonlinear static analysis of RC sub-assemblages and a simple approach for extending the formulation to dynamic cases is presented. Dynamic progressive collapse assessment of RC space frames based on the alternate path method is undertaken and dynamic load factor (DLF) is estimated. Further, it is concluded that the torsional behaviour of reinforced concrete elements satisfying minimum standard requirements is not significant for the framed structures studied.

Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action

  • Ferraioli, Massimiliano
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.253-269
    • /
    • 2019
  • This paper investigates the effects of the tensile catenary action on dynamic increase factor (DIF) in the nonlinear static analysis for progressive collapse of steel-frame buildings. Numerical analyses were performed to verify the accuracy of the empirical and analytical expressions proposed in the literature in cases where the catenary action is activated. For this purpose, nonlinear static and dynamic analyses of a series of steel moment frame buildings with a different number of spans and stories were carried out following the alternate path method. Different column removal scenarios were considered as separate load cases. The dynamic increase factor that approximately compensates for the dynamic effects in the nonlinear static analysis was selected so to match results from the nonlinear dynamic analysis. The study results showed that the many expressions in literature may not work in cases where the catenary stage is fully developed.

QoS 서비스와 최선형 서비스를 위한 효율적인 MPLS 라우팅 시스템 (An Efficient MPLS Routing System for Supporting QoS and Best-Effort Services)

  • 전한얼;김성대;신용철;이재용;김형택
    • 한국통신학회논문지
    • /
    • 제28권1B호
    • /
    • pp.71-79
    • /
    • 2003
  • 인터넷에서 트래픽의 폭발적인 증가로 인하여 데이터 흐름에 대한 서비스품질(QoS) 보장과 트래픽 엔지니어링 문제가 매우 중요하게 되었다 MPLS는 출발지와 목적지 사이에 다중의 경로를 사용하는 데 자유롭기 때문에 기존의 IP 라우팅보다 이러한 문제를 해결하는데 장점을 갖고 있다 특히 제한기반 최소 거리(CSPF) 알고리즘과 MPLS의 explicit 결로는 위의 문제를 해결하도록 해주었다. 그러나, CSPF 알고리즘은 QoS 제한 이내의 최소 거리 경로를 찾기 때문에 QoS가 만족되는 다른 경로를 찾을 수 없으며, 트래픽이 몰리는 정체가 발생하였을 경우 최선형(best-effort) 트래픽 데이터는 잃게 된다. 본 논문에서는 MPLS 망에서 트래픽을 분산시키는 라우팅을 통해 네트워크 자원을 최적으로 사용하는 방안을 제시한다