• Title/Summary/Keyword: Alpha-smooth muscle like actin

Search Result 9, Processing Time 0.017 seconds

Ultrastructural and Immunohistochemical Study of Hepatic Fibrosis after the Ligation of the Common Bile Duct in Rats (백서의 총담관 결찰에 의한 간 섬유화의 초미세구조적 및 면역조직화학적 연구)

  • Moon, Kyung-Rye;Rho, Young-Ill;Seo, Woo-Chul;Park, Yeong-Bong;Kim, Man-Woo;Seo, Jae-Hong;Park, Sang-Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.2 no.2
    • /
    • pp.185-193
    • /
    • 1999
  • Purpose: Proliferation of bile duct-like structures and fibrosis is a hepatic cellular reaction observed in most forms of human liver disease and in a variety of experimental conditions associated with liver injury. The aim of this study was to investigate the activation of Ito cells and bile duct proliferation in the rat after common bile duct ligation (CBDL). Methods: Hepatic morphological abnormalities were examined in rats whose bile ducts had been irreversibly ligated for 15, 21, 24 and 28 days. The liver was examined by immunohistochemical staining for ${\alpha}$-smooth muscle actin, the known marker of activated Ito cells, and light and electron microscopes. Results: After CBDL, the bile canalicular proliferation and interstitial fibrosis were gradually increased in the periportal areas extended to hepatic sinusoids. Ito cells positive for ${\alpha}$-smooth muscle actin were frequently observed in the periductular space and in perisinusoidal space of Disse. Ito cells and myofibroblasts were gradually increased in the interstitial fibrosis until the 28th day after CBDL. Ito cells and myofibroblasts had microfilaments with dense body at the periphery of the cell. Conclusions: Our results suggest that Ito cells may be fibroblastic or myogenic. It has also been postulated that during the development of hepatic fibrosis, Ito cells become myofibroblasts or fibroblast like cells.

  • PDF

Antifibrotic Effect of Extracellular Biopolymer from Submerged Mycelial Cultures of Cordyceps militaris on Liver Fibrosis Induced by Bile Duct Ligation and Scission in Rats

  • Nan, Ji-Xing;Park, Eun-Jeon;Yang, Byung-Keun;Song, Chi-Hyun;Ko, Geonil;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.24 no.4
    • /
    • pp.327-332
    • /
    • 2001
  • The antifibrotic effects of hot water extract (WEC), intracellular biopolymer (IPC) and extracellular biopolymers (EPC) from mycelial liquid culture of Cordyceps militaris on liver fibrosis were studied. Liver fibrosis was induced by a bile duct ligation and scission (BDL/S) operation, duration of 4 weeks in rats. In BDL/S rats, the levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin in serum and hydroxyproline content in liver were dramatically increased. The WEC or IPC treatment (30mg/kg/day for 4 weeks, p.o.) in BDL/S rats reduced the serum AST, ALT and ALP levels significantly (p<0.01). The EPC treatment (30 mg/kg /day for 4 weeks, p.o.) reduced the serum ALT, AST and ALP levels significantly (p<0.01). Malondialdehyde contents in liver treated with WEC, IPC or EPC were significantly reduced (p <0.05). But Liver hydroxyproline content was decreased only in EPC treated BDL/S rats to 55% that of BDL/S control rats (p < 0.01). The morphological characteristics and expression of alpha smooth muscle like actin in fibrotic liver, which appeared in BDL/S control group were improved in EPC treated fibrotic liver. These results indicate that IPC (30 mg/kg /day for 4 weeks, p.o.) has an antifibrotic effect on fibrotic rats induced by BDL/S.

  • PDF

An Intrarenal Adrenocortical Carcinoma Arising in an Adrenal Rest

  • Lee, Ji Hee;Choi, Young Deuk;Cho, Nam Hoon
    • Journal of Pathology and Translational Medicine
    • /
    • v.52 no.6
    • /
    • pp.416-419
    • /
    • 2018
  • We describe a case of a 61-year-old Korean man who was diagnosed with renal cell carcinoma that was discovered on abdominopelvic computed tomography obtained after the patient complained of back pain. A radical nephrectomy was performed, and the surgical specimen showed a relatively well-circumscribed and yellowish lobulated hard mass. Microscopically, the tumor showed sheets and nests of hypercellular pleomorphic cells with thick fibrous septation, frequent mitoses, and areas of adrenal cortical-like tissue. Immunohistochemical staining revealed that the tumor cells were positive for inhibin-${\alpha}$, vimentin, synaptophysin, and melan A. It also revealed that the tumor cells were negative for pan-cytokeratin, epithelial membrane antigen, paired box 8, ${\alpha}$-methylacyl-coenzyme A racemase, CD10, cytokeratin 7, carbonic anhydrase 9, c-Kit, renal cell carcinoma, transcription factor E3, human melanoma black 45, desmin, smooth muscle actin, S-100, chromogranin A, CD34, anaplastic lymphoma kinase, and integrase interactor 1. Based on these histopathological and immunohistochemical findings, we diagnosed the tumor as intrarenal adrenocortical carcinoma arising in an adrenal rest. Several cases of intrarenal adrenocortical carcinoma have been reported, although they are very rare. Due to its poor prognosis and common recurrence or metastasis, clinicians and pathologists must be aware of this entity.

Establishment of Stem-like Cells from Human Umbilical Cord Vein

  • Park, Seah;Kim, Kyung-Suk;Kim, Haekwon;Do, Byung-Rok;Kwon, Hyuck-Chan;Kim, Hyun-Ok;Im, Jung-Ae
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.78-78
    • /
    • 2003
  • Adult stem cells can make identical copies of themselves for long periods of time. They also give rise to many differentiated mature cell types that have characteristic morphology and specialized function. Human adult stem cells are the attractive raw materials for the cell/tissue therapy, however, it is not easy to get from the adult tissues. In the present study, we tried to isolate a cell population derived from human umbilical cord vein which has been discarded after birth. The cells were isolated after treatment of the umbilical vein with collagenase or trypsin. After 3 days of culture, two kinds of cell populations were found consisting of adherent cells with endothelial cell-like and fibroblast-like morphology, respectively. When these cells were subcultured 12 times over a period of 3 months, almost cells appeared uniformly to exhibit fibroblastoid morphology which was different from that of mesenchymal stem cells obtained from human bone marrow The results of RT-PCR analyses showed distinct expression of BMP-4, oct-4, and SCF genes but not of GATA, PAX-6 and Brachyury genes. On immunohistochemical staining, the cells were negative for the von Willebrand factor(vWF), alpha-smooth muscle actin and placental alkaline phosphatase. From these observations, it is suggested that stem-like cells might be present in human umbilical cord vein.

  • PDF

The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells

  • Bae, Yoon-Kyung;Kim, Gee-Hye;Lee, Jae Cheoun;Seo, Byoung-Moo;Joo, Kyeung-Min;Lee, Gene;Nam, Hyun
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.386-392
    • /
    • 2017
  • Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, ${\alpha}-smooth$ muscle actin, platelet-derived growth factor receptor ${\beta}$, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HUVECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the $SDF-1{\alpha}$ and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the perivascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.

Identification of Matrix Mineralization-Related Genes in Human Periodontal Ligament Cells Using cDNA Microarray (cDNA microarray에 의한 치주인대세포의 광물화 결절형성에 관여하는 유전자들의 분석)

  • Shin, Jae-Hee;Park, Jin-Woo;Yeo, Shin-Il;Noh, Woo-Chang;Kim, Moon-Kyu;Kim, Jung-Chul;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.447-463
    • /
    • 2007
  • Periodontal ligament (PDL) cells have been known as multipotential cells, and as playing an important rolesin periodontal regeneration. The PDL cells are composed of heterogeneous cell populations which have the capacity to differentiate into either cementoblasts or osteoblasts, depending on needs and conditions. Therefore, PDL cells have the capacity to produce mineralized nodules in vitro in mineralization medium which include ascorbic acid, ${\beta}$-glycerophosphate and dexamethasone. In spite of these well-known osteoblast like properties of PDL cells, very little is known about the molecules involved in the formation of the mineralized nodules in the PDL cells. In the present study, we analysed gene-expression profiles during the mineralization process of cultured PDL cells by means of a cDNA microarray consisting of 3063 genes. Nodules of mineralized matrix were strongly stained with alizarin red S on the PDL cells cultured in the media with mineralization supplements. Among 3,063 genes analyzed, 35 were up-regulated more than two-fold at one or more time points in cells that developed matrix mineralization nodules, and 38 were down-regulated to less than half their normal level of expression. In accord with the morphological change we observed, several genes related to calcium-related or mineral metabolism were induced in PDL cells during osteogenesis, such as IGF-II and IGFBP-2. Proteogycan 1, fibulin-5, keratin 5, ,${\beta}$-actin, ${\alpha}$-smooth muscle actin and capping protein, and cytoskeleton and extracellular matrix proteins were up-regulated during mineralization. Several genes encoding proteins related to apoptosis weredifferentially expressed in PDL cells cultured in the medium containing mineralization supplements. Dkk-I and Nip3, which are apoptosis-inducing agents, were up-regulated, and Btf and TAXlBP1, which have an anti-apoptosis activity, were down-regulated during mineralization. Also periostin and S100 calciumbinding protein A4 were down-regulated during mineralization.

In Vivo Angiogenic Capacity of Stem Cells from Human Exfoliated Deciduous Teeth with Human Umbilical Vein Endothelial Cells

  • Kim, Ji-Hye;Kim, Gee-Hye;Kim, Jae-Won;Pyeon, Hee Jang;Lee, Jae Cheoun;Lee, Gene;Nam, Hyun
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.790-796
    • /
    • 2016
  • Dental pulp is a highly vascularized tissue requiring adequate blood supply for successful regeneration. In this study, we investigated the functional role of stem cells from human exfoliated deciduous teeth (SHEDs) as a perivascular source for in vivo formation of vessel-like structures. Primarily isolated SHEDs showed mesenchymal stem cell (MSC)-like characteristics including the expression of surface antigens and in vitro osteogenic and adipogenic differentiation potentials. Moreover, SHEDs were positive for NG2, ${\alpha}$-smooth muscle actin (SMA), platelet-derived growth factor receptor beta ($PDGFR{\beta}$), and CD146 as pericyte markers. To prove feasibility of SHEDs as perivascular source, SHEDs were transplanted into immunodeficient mouse using Matrigel with or without human umbilical vein endothelial cells (HUVECs). Transplantation of SHEDs alone or HUVECs alone resulted in no formation of vessel-like structures with enough red blood cells. However, when SHEDs and HUVECs were transplanted together, extensive vessel-like structures were formed. The presence of murine erythrocytes within lumens suggested the formation of anastomoses between newly formed vessel-like structures in Matrigel plug and the host circulatory system. To understand underlying mechanisms of in vivo angiogenesis, the expression of angiogenic cytokine and chemokine, their receptors, and MMPs was compared between SHEDs and HUVECs. SHEDs showed higher expression of1VEGF, SDF-$1{\alpha}$, and $PDGFR{\beta}$ than HUVECs. On the contrary, HUVECs showed higher expression of VEGF receptors, CXCR4, and PDGF-BB than SHEDs. This differential expression pattern suggested reciprocal interactions between SHEDs and HUVECs and their involvement during in vivo angiogenesis. In conclusion, SHEDs could be a feasible source of perivascular cells for in vivo angiogenesis.

Characterization and Genetic Profiling of the Primary Cells and Tissues from Mandible of Mouse Fetus and Neonate

  • Kang, Jung-Han;Nam, Hyun;Park, Soon-Jung;Oh, Keun-Hee;Lee, Dong-Seup;Cho, Jae-Jin;Lee, Gene
    • International Journal of Oral Biology
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2007
  • The stem cell research is emerging as a cutting edge topic for a new treatment for many chronic diseases. Recently, dental stem cell would be possible for regeneration of tooth itself as well as periodontal tissue. However, the study of the cell characterization is scarce. Therefore, we performed the genetic profiling and the characterization of mouse fetus/neonate derived dental tissue and cell to find the identification during dental development. We separated dental arch from mandibles of 14.5 d fetal mice and neonate 0 d under the stereoscope, and isolated dental cells primarily from the tissues. Then, we examined morphology and the gene expression profiles of the primary cells and dental tissues from fetus/neonate and adult with RT-PCR. Primary dental cells showed heterogeneous but the majority was shown as fibroblast-like morphology. The change of population doubling time levels (PDLs) showed that the primary dental cells have growth potential and could be expanded under our culture conditions without reduction of growth rate. Immunocytochemical and flow cytometric analyses were performed to characterize the primary dental cell populations from both of fetus (E14.5) and neonate. Alpha smooth muscle actin (${\alpha}-SMA$), vimentin, and von Willebrand factor showed strong expression, but desmin positive cells were not detected in the primary dental cells. Most of the markers were not uniformly expressed, but found in subsets of cells, indicating that the primary dental cell population is heterogeneous, and characteristics of the populations were changed during culture period. And mesenchymal stem cell markers were highly expressed. Gene expression profile showed Wnt family and its related signaling molecules, growth factors, transcription factors and tooth specific molecules were expressed both fetal and neonatal tissue. The tooth specific genes (enamelin, amelogenin, and DSPP) only expressed in neonate and adult stage. These expression patterns appeared same as primary fetal and neonatal cells. In this study we isolated primary cells from whole mandible of fetal and neonatal mice. And we investigated the characteristics of the primary cells and the profile of gene expressions, which are involved in epithelial-mesenchymal interactions during tooth development. Taken together, the primary dental cells in early passages or fetal and neonatal mandibles could be useful stem cell resources.

THE CHANGE OF MYOEPITHELIAL CELL AFTER LIGATION AND CUT OF SUBMANDIBULAR GLAND DUCT IN RABBIT (가토 악하선 도관 절단술 및 결찰술 후 근상피세포의 변화)

  • Yun, Weon-Suk;Kim, Chul-Hwan;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.2
    • /
    • pp.81-93
    • /
    • 2006
  • Obstructive sialadenitis is one of common disease in salivary gland, and most common histologic features are loss of acinar cell and ductal dilatation associated with fibrosis, and infiltration of inflammatory cells. Although many experimental studies has been accomplished for the salivary acinar cell change in obstructive salivary gland disease, studies for myoepithelial cell were deficient. This study is designed for salivary gland tissue change, especially myoepithelial cell when nonspecific chronic sialadenitis or salivary duct injury by duct obstruction or cut can be occurred that is common encounted clinically. After ligation and cutting of submandibular gland of rabbit, groups of aminmal were sacrificed at 1, 2, 4 weeks postoperatively, submandibular gland were removed. The histopathologic evaluation was done with light microscopy. And, with immunohistochemical staining with ${\alpha}$-smooth muscle actin, characteristics of myoepithelial cell were examined. With transmission electron microscopy, ultrastructure of myoepithelial cell were examined for distribution and ultrastructure of myoepithelial cell. The results were obtained as follows: 1. In the histopathologic evaluation, ligation and cutting group of 1 week, linkage of myoepithelial cell associated with acinar atrophy and degeneration were disappeared in both group. 2. More prominent squamous metaplasia was seen in acinar cells of ligation group of 2 weeks experimental rabbit than cutting group. 3. Acinar cells are nearly disappeared in both ligation and cutting group of 4 weeks, and myoepithelial cell also disappeared associated with acinar cell atrophy, and duct-like structure composed by squamous cells by squamous metaplasia in acinar cells were distributed. 4. In immunohistochemical study, both ligation and cutting group ${\alpha}$-SMA distribution were diminished at 1 week experimental rabbits, but myoepithelial cell was more diminished in ligation group than cutting group, which were distributed around cells of squamous metaplasia. 5. Nuclear condensation, chromosome margination, and cytoplasmic vaculoation were appeared in myoepithelial cell of both cutting and ligation group after 1 week with transmission electron microscopy. But degenerative substance were seen in cytoplasm of myoepithelial cell of ligation group of 4 weeks. From the results obtained in this study, atrophy and degeneration of myoepithelial cell was more prominent in duct ligation group than duct cutting group, and myoepithelial cells were seen around cells squamous metaplasia of acinar cell.