• Title/Summary/Keyword: Alpha-particle

Search Result 386, Processing Time 0.021 seconds

Effect of cooling rate on precipitation hardening of a Pd-Cu-Ga-Zn metal-ceramic alloy during porcelain firing simulation (금속-세라믹용 Pd-Cu-Ga-Zn계 합금의 모의 소성 시 냉각 속도가 석출 경화에 미치는 영향)

  • Kim, Min-Jung;Shin, Hye-Jeong;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.207-216
    • /
    • 2017
  • The effect of cooling rate on precipitation hardening of a Pd-Cu-Ga-Zn metal-ceramic alloy during porcelain firing simulation was investigated and the following results were obtained. When the cooling rate was fast (Stage 0), the hardness of the alloy increased at each firing step and the high hardness value was maintained. When the cooling rate was slow (Stage 3), the hardness was the highest at the first stage of the firing, but the final hardness of the alloy after complete firing was lower. The increase in hardness of the specimens cooled at the cooling rate of Stage 0 after each firing step was caused by precipitation hardening. The decrease in hardness of the specimens cooled at the cooling rate of Stage 3 after each firing step was attributed to the coarsening of the spot-like precipitates formed in the matrix and plate-like precipitates. The matrix and the plate-like precipitates were composed of the $Pd_2(Cu,Ga,Zn)$ phase of CsCl-type, and the particle-like structure was composed of the Pd-rich ${\alpha}$-phase of face-centered cubic structure. Through the porcelain firing process, Cu, Ga, and Zn, which were dissolved in Pd-rich ${\alpha}$ particles, precipitated with Pd, resulting in the phase separation of the Pd-rich ${\alpha}$ particles into the Pd-rich ${\alpha}^{\prime}$ particles and ${\beta}^{\prime}$ precipitates composed of $Pd_2(Cu,Ga,Zn)$. These results suggested that the durability of the final prosthesis made of the Pd-Cu-Ga-Zn alloy can be improved when the cooling rate is fast during porcelain firing simulation.

The Effect of Pretreatment of Raw Powders on the Photoluminescence of Ca-α-SiAlON:Eu2+ Phosphor

  • Park, Young-Jo;Kim, Jin-Myung;Lee, Jae-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.413-417
    • /
    • 2014
  • The effect of calcination treatment of raw powders prior to high temperature synthesis of Ca-${\alpha}$-SiAlON:$Eu^{2+}$ phosphor was investigated. Based on data acquired from thermogravimetric analysis, calcination temperatures were set at 600, 750, and $900^{\circ}C$. Compared to the photoluminescence (PL) intensity of direct synthesis without calcination, a similar intensity was found for the $600^{\circ}C$ treatment, a 19% increased PL intensity was found for the $750^{\circ}C$ treatment, and a 23% decreased PL intensity was found for the $900^{\circ}C$ treatment. Observation of the particle morphology of the synthesized phosphors revealed that the material transport promoted through the agglomerates formed by the $750^{\circ}C$ treatment led to enhanced PL intensity. On the other hand, the oxidation of the starting AlN particles during the $900^{\circ}C$ treatment resulted in decreased photoluminescence.

Preparation and Cyclic Performance of Li1.2(Fe0.16Mn0.32Ni0.32)O2 Layered Cathode Material by the Mixed Hydroxide Method

  • Karthikeyan, K.;Nam, K.W.;Hu, E.Y.;Yang, X.Q.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1995-2000
    • /
    • 2013
  • Layered $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ was prepared by the mixed hydroxide method at various temperatures. Xray diffraction (XRD) pattern shows that this material has a ${\alpha}-NaFeO_2$ layered structure with $R{\bar{3}}m$ space group and that cation mixing is reduced with increasing synthesis temperature. Scanning electron microscopy (SEM) reveals that nano-sized $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ powder has uniform particle size distribution. X-ray absorption near edge structure (XANES) analysis is used to study the local electronic structure changes around the Mn, Fe, and Ni atoms in this material. The sample prepared at $700^{\circ}C$ delivers the highest discharge capacity of 207 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ with good capacity retention of 80% after 20 cycles.

The Investigation of Reaction Parameters on the Reactivity in the Preparation of SiC by SHS (자전연소합성법에 의한 SiC 분말 제조시 반응변수의 영향)

  • Shin, Chang-Yun;Won, Hyung-Il;Nersisyan, Hayk;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.427-432
    • /
    • 2006
  • The preparation of SiC powder by SHS in the system of $SiO_2-Mg-C$ was investigated in this study. The effects of various processing parameters such as the initial pressure of inert gas in reactor, the content of Mg and C in mixture and the size of $SiO_2$ particles on the synthesis of SiC by SHS methode were investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 5 atm, and as the pressure increased, and the concentration of unreacted Mg decreased. At 50 atm of the initial inert gas pressure in reactor, the optimum composition for the preparation of pure SiC was $SiO_2+2.5Mg+1.2C$. SiC powder synthesized in this condition had a mixture of ${\alpha}-SiC\;and\;{\beta}-SiC$ with an irregular shape and the particle size of $0.5{\sim}0.8{\mu}m$.

The Effect of Zirconia Particle Size on Mechanical Properties of Zirconia Toughened Alumina (ZrO2의 분말크기가 ZTA의 기계적 물성에 미치는 영향)

  • Sohn, Jeongho;Shin, Hyung-Sup
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.652-657
    • /
    • 2014
  • The purpose of this study was to investigate the microstructures and mechanical properties of zirconia toughened alumina (ZTA) ceramics prepared from two kinds of 3Y-TZP powders. ZTA composites were prepared by adding two kinds of 3Y-TZP powders, 3YEH (BET = $7m^2/g$) and 3YEM (BET = $16m^2/g$), to ${\alpha}$-alumina in the range of 5-25 wt%. It was found that the microstructure photographs of the ZTA composites showed that the average grain size of alumina decreased as the content of zirconia increased. In our present study, specimens containing 3YEM zirconia exhibited smaller grain sizes compared to those of 3YEH zirconia. The Vickers hardness of the ZTA composites that were sintered at $1600^{\circ}C$ for 2 hrs was found to smoothly decrease with increasing zirconia content because of the low Young modulus in zirconia. The Vickers hardness of the ZTA containing 3YEH zirconia was greater than that of the 3YEM zirconia. In substance, the fracture toughness ($K_{1c}$) of the ZTA composites increased as the content of zirconia increased. The fracture toughness ($K_{1c}$) of ZTA containing 3YEM zirconia was greater than that of 3YEH zirconia.

A Study on the Thermal Properties of Epoxy/Micro-Nano Alumina Composites, as Mixture of Surface Modified Nano Alumina (표면개질된 나노알루미나를 혼합한, 에폭시/마이크로-나노알루미나 콤포지트의 열적특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1504-1510
    • /
    • 2016
  • The aim of this study is to improve properties both glass transition temperature($T_g$) and coefficient of thermal expansion(CTE) using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,2,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40, 50, 60wt%)+surface modified nano alumina(1_phr) composites. 20 kinds specimen were prepared with containing micro, nano alumina and GDE as a micro composites(10, 20, 30, 40, 50, 60, 70wt%) or a nano/micro alumina composites(1phr/40, 50, 60wt%). Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The glass transition temperature and coefficients of thermal expansion was evaluated by DSC and TMA. The glass transition temperature decreased and coefficients of thermal expansion become smaller with filled contents of epoxy/micro alumina composites. On the other hand, $T_g$ and CTE as GDE addition variation(1,2,3,5g) of epoxy/micro-nano alumina composites decreased and increased respectively.

The AC Insulation Breakdown Properties of Epoxy/Multi-Alumina Composites for Adding Surface Modified Nano Alumina (표면처리된 나노알루미나가 첨가된 에폭시/멀티-알루미나 콤포지트의 교류절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1511-1517
    • /
    • 2016
  • The aim of this study is to improve of properties for electrical AC insulation breakdown strength using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40,50,60wt%)+surface modified nano alumina(1_phr) composites. 14 kinds specimen were prepared with containing epoxy resins, epoxy micro composites and epoxy nano-micro alumina mixture composites. Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The electrical AC insulation breakdown strength was evaluated by sphere to sphere electrode system and raising velocity 1kV/s. The AC breakdown strength decreased insulation properties of multi-composites according to increasing micro alumina and GDE addition contents.

Synthesis and Microstructure of Fe(C) Nanocapsules by Chemical Vapor Condensation (화학기상응축공정으로 제조한 Fe(C) 나노캡슐의 합성 및 미세구조)

  • Lee Jung-Han;Kim Sung-Duk;Kim Jin-Chun;Choi Chul-Jin;Lee Chan-Gyu
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.515-521
    • /
    • 2004
  • Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl $(Fe(CO)_5)$. Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below $1100^{\circ}C$ in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at $500^{\circ}C$ consisted of three layers of ${\alpha}$-Fe/$Fe_3C$/amorphous phases, but it had two phase core-shell structure which consited of $Fe_3C$ phase of core and graphite of shell at $1100^{\circ}C$.

A Study on Magnetic Iron Oxide Nano Particles Synthesized by the Levitational Gas Condensation (LGC) Method (부양가스응축법에 의해 제조된 철산화물 나노 분말의 자기적 특성연구)

  • 엄영랑;김흥회;이창규
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.50-54
    • /
    • 2004
  • Nanoparticles of iron oxides have been prepared by the levitational gas condensation (LGC) method, and their structural and magnetic properties were studied by XRD, TEM and Mossbauer spectroscopy. Fe clusters were evaporated from a surface of the levitated liquid Fe droplet and then condensed into nanoparticles of iron oxide with particle size of 14 to 30 nm in a chamber filled with mixtures of Ar and $O_2$ gases. It was found that the phase transition from both $\gamma$-$Fe_2O_3$ and $\alpha$-Fe to $Fe_3O_4$, which was evaluated from the results of Mossbauer spectra, strongly depended on the $O_2$ flow rate. As a result, $\gamma$-$Fe_2O_3$ was synthesized under the $O_2$ flow rate of 0.1$\leq$$Vo_2$(Vmin)$\leq$0.15, whereas $Fe_3O_4$ was synthesized under the $O_2$, flow rate of 0.15$\leq$$Vo_2$(Vmin)$\leq$0.2.

Microstructural Characteristics of SiC Particle Reinforced Aluminum Alloy Composite by Squeeze Casting (Squeeze Casting에 의한 SiC 입자강화 Al합금기 복합재료의 미세조직 특성)

  • Kim, Sug-Won;Woo, Kee-Do;Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.15 no.6
    • /
    • pp.566-573
    • /
    • 1995
  • In this study, the microstructural characteristics such as primary silicon, eutectic silicon, $SiC_p$ dispersion behavior, compound amount and Si solubility in $Al/SiC_p$ composite fabricated by the squeeze casting under various conditions were investigated systematically. As applied pressure(MPa) increases, cooling rate and compound amount are increased. In gravity casting, the cooling rate of hypereutectic composite is slower than of hypoeutectic composite by exothermic reaction of primary Si crystallization. But the cooling rate of hypereutectic composite is faster than that of hypoeutectic composite fabricated by same applied pressure, because amount of primary Si crystallization in hypereutectic composite was decreased, on the contrary, primary ${\alpha}-Al$ in hypoeutetic composite was increased due to increase of Si solubility in matrix by applied pressure. The crystalized primary silicon in hypereutectic composite fabricated by squeeze casting become more fine than that in non-pressure casting This is because mush zone became narrow due to increase of Si content of eutectic composition by pressure and time for growth of primary silicon got shorter according to applied pressure. It is turned out that eutectic temperature and liquidus are decreased by the increasing of squeeze pressure in all the composite due to thermal unstability of matrix owing to increasing of Si solubility in matrix by the increasing of applied pressure, as indicated in thermal anaiysis(DSC) results.

  • PDF