• Title/Summary/Keyword: Alpha-galactosidase A

검색결과 122건 처리시간 0.022초

Production of ${\alpha}$- and ${\beta}$-Galactosidases from Bifidobacterium longum subsp. longum RD47

  • Han, Yoo Ri;Youn, So Youn;Ji, Geun Eog;Park, Myeong Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.675-682
    • /
    • 2014
  • Approximately 50% of people in the world experience abdominal flatulence after the intake of foods containing galactosides such as lactose or soybean oligosaccharides. The galactoside hydrolyzing enzymes of ${\alpha}$- and ${\beta}$-galactosidases have been shown to reduce the levels of galactosides in both the food matrix and the human gastrointestinal tract. This study aimed to optimize the production of ${\alpha}$- and ${\beta}$-galactosidases of Bifidobacterium longum subsp. longum RD47 with a basal medium containing whey and corn steep liquor. The activities of both enzymes were determined after culturing at $37^{\circ}C$ at pH 6.0 for 30 h. The optimal production of ${\alpha}$- and ${\beta}$-galactosidases was obtained with soybean oligosaccharides as a carbon source and proteose peptone no. 3 as a nitrogen source. The optimum pH for both ${\alpha}$- and ${\beta}$-galactosidases was 6.0. The optimum temperatures were $35^{\circ}C$ for ${\alpha}$-galactosidase and $37^{\circ}C$ for ${\beta}$-galactosidase. They showed temperature stability up to $37^{\circ}C$. At a 1 mM concentration of metal ions, $CuSO_4$ inhibited the activities of ${\alpha}$- and ${\beta}$-galactosidases by 35% and 50%, respectively. On the basis of the results obtained in this study, B. longum RD47 may be used for the production of ${\alpha}$- and ${\beta}$-galactosidases, which may reduce the levels of flatulence factors.

Bifidobacterium sp.로 제조된 반죽의 물성적 특성 (Rheological Characteristics of Wheat Flour Dough with Bifidobacterium sp.)

  • 안덕준;홍정훈
    • 한국식생활문화학회지
    • /
    • 제17권2호
    • /
    • pp.165-170
    • /
    • 2002
  • In order to economically utilize dough with B. longum, B. infantis and B. brevis as a bread improver, aerotolerance, ${\alpha}-galactosidase$ activity, organic acids, farinograph and extensograph of dough were investigated. In aerotolerance of Bifidobacterium sp., B. longum was highest among tested starters, followed by B. infantis. The ${\alpha}-galactosidase$ activity was highest in the B. longum among tested starters. In organic acids, the contents of lactic acid and acetic acid were the highest in the among tested starters, followed by B. infantis. In farinograms of dough, water absorption and peak time were highest in the B. brevis among tested dough. Extensogram showed that the area increased remarkably in B. longum and B. infantis at 135min of fermentation. Extensibility and resistance to extension of dough were highest in the B. infantis among the dough, followed B. longum.

A novel GLA mutation in a Korean boy with an early cardiac manifestation of Fabry disease

  • Kwon, Soonhak;Park, Jin-Sung;Jung, Jae Hun;Hwang, Su Kyeong;Kim, Yeo Hyang;Lee, Yun Jeong
    • Journal of Genetic Medicine
    • /
    • 제15권1호
    • /
    • pp.28-33
    • /
    • 2018
  • Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by the deficiency of ${\alpha}$-galactosidase A. Patients with classical FD present acroparesthesia, hypohidrosis, cornea verticillata, disseminated angiokeratoma, and microalbuminuria in childhood, and develop life-threatening renal, cardiac, and cerebrovascular complications typically after the fourth decade of life. To date, more than 700 mutations responsible for FD have been identified in the human GLA gene. Herein, we report a novel GLA mutation, c.1117_1141del25 (p.Gly373Profs*10), identified in an 11-year-old Korean boy with FD presenting early cardiac and neurologic manifestation and in other affected family members. The boy had acroparesthesia, hypohidrosis, cornea verticillata, and left ventricular hypertrophy. His mother and sister also had acroparesthesia. Two males on the mother's side had similar pain and died of unknown causes. The plasma ${\alpha}$-galactosidase A activity (4.1 nmol/hr/mg protein) of the patient was markedly lower than the mean value of the controls. The plasma level of globotriaosylsphingosine was elevated in the patient and all the carriers. We concluded the novel GLA mutation c.1117_1141del25 is a pathogenic mutation for FD, probably related to the early cardiac manifestation of FD.

Development of a Plasmid Vector for Overproduction of $\beta$-Galactosidase in Escherichia coli by Using Genetic Components of groEx from Symbiotic Bacteria in Amoeba proteus

  • Lee, Jung-Eun;Ahn, Eun-Young;Ahn, Tae-In
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권5호
    • /
    • pp.509-516
    • /
    • 1998
  • A plasmid vector, pXGPRMATG-lac-Tgx, was developed for overproduction of $\beta$-galactosidase in Escherichia coli using the genetic components of groEx, a heat-shock gene cloned from symbiotic X-bacteria in Amoeba proteus. The vector is composed of intragenic promoters P3 and P4 of groEx, the structural gene of lac operon, transcription tenninator signals of lac and groEx, and ColEl and amp'of pBluescript SKII. The optimized host, E. coli DH5$\alpha$, transfonned with the vector constitutively produced 117,310-171,961 Miller units of $\beta$-galactosidase per mg protein in crude extract. The amount of enzyme in crude extract was 53% of total water-soluble proteins. About 43% of the enzyme could be purified to a specific activity of 322,249 Miller units/mg protein after two-fold purification, using two cycles of precipitation with ammonium sulfate and one step of gel filtration. Thus, the expression system developed in this study presents a low-cost and simple method for purifying overproduced $\beta$-galactosidase in E. coli.

  • PDF

잠뇨로부터 질소함유 당물질 분리 및 glycosidase에 대한 저해활성 (Isolation of N-Containing Sugars from Silkworm Urine and Their Glycosidase Inhibitory Activities)

  • 송주경;정성현
    • Biomolecules & Therapeutics
    • /
    • 제6권4호
    • /
    • pp.364-370
    • /
    • 1998
  • Glycosidase inhibitors from urine of Bombyx mori were isolated and their inhibitory activities on glycosidases were evaluated. Six compounds were isolated by using several ion exchange columns, and their chemical structures were identified by the physicochemical and spectral data. Compound IV, V and Ⅵ were identified as 1-deoxynojirimycin, fagomine and 1,4-dideoxy-1,4-imino-D-arabinitol, respectively. Among six compounds isolated,1-deoxynojirimycin(IV) was the most potent inhibitor on $\alpha$-glucosidase and $\beta$-galactosidase of rat intestine, and its inhibitory activities for trehalase and almond $\beta$-glucosidase were relatively weak. Compound V and Ⅵl retained a little inhibitory potency toward $\alpha$-glucosidase and $\beta$-galactosidase. Compound II and III, however, have been found to have no effect on all glycosidases tested in this study.

  • PDF

Novel strategy for isolating suppressors of meiosis-deficient mutants and its application for isolating the bcy1 suppressor

  • Shin, Deug-Yong;Yun, Jean-Ho;Yoo, Hyang-Sook
    • Journal of Microbiology
    • /
    • 제35권1호
    • /
    • pp.61-65
    • /
    • 1997
  • A novel strategy was developed for isolating suppressors from sporulation-deficient mutants. The mutation in the BCY1 gene, which codes for the regulatory subunit of cAMP-dependent protein kinase, when homozygous, results in diploids being meiosis and sporulation deficient. Two plasmids, YCp-MAT.alpha. and YEp-SPOT7-lacZ, were introduced into MAT.alpha. BCY1$\^$+/ or MAT.alpha. bcy1 haploid cells. The transformant of the BCY1$\^$+/ haploid cell produced .betha.-galactosidase under nutrient starvation, but the bcy1 transformant did not. Using this system, the mutagenesis experiment performed on the bcy1 transformant strain resulted in a number of sporulation mutants that produced .betha.-galactosidase under nutrient starvation. One complementation group, sob1, was identified from the isoalted suppressor mutants and characterized as a single recessive mutation by tetrad analysis. Genetic analysis revealed that the sob1 mutation suppressed the sporulation deficiency, the failure to arrest at the G1 phase of the cell cecle, and the sensitivity to heat or nitrogen starvation caused by the bcy1 mutation. However, the sob1 mutation did not suppress the sporulation deficiency of ime1 and of ime2 diploids. These results suggest that the sob1 mutation affects a gene which functions as a downstream regulator in both meiosis and cell cycle regulation.

  • PDF

Molecular Cloning and Expression of a Novel Protease-resistant GH-36 $\alpha$-Galactosidase from Rhizopus sp. F78 ACCC 30795

  • Yanan, Cao;Wang, Yaru;Luo, Huiying;Shi, Pengjun;Meng, Kun;Zhou, Zhigang;Zhang, Zhifang;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권11호
    • /
    • pp.1295-1300
    • /
    • 2009
  • A 2,172-bp full-length gene (aga-F78), encoding a protease-resistant $\alpha$-galactosidase, was cloned from Rhizopus sp. F78 and expressed in Escherichia coli. The deduced amino acid sequence shared highest identity (45.0%) with an $\alpha$-galactosidase of glycoside hydrolase family 36 from Absidia corymbifera. After one-step purification with a Ni-NTA chelating column, the recombinant Aga-F78 migrated as a single band of ~82 and ~210 kDa on SDS-PAGE and nondenaturing gradient PAGE, respectively, indicating that the native structure of the recombinant Aga-F78 was a trimer. Exhibiting the similar properties as the authentic protein, purified recombinant Aga-F78 was optimally active at $50^{\circ}C$ and pH 4.8, highly pH stable over the pH range 5.0-10.0, more resistant to some cations and proteases, and had wide substrate specificity (pNPG, melidiose, raffinose, and stachyose). The recombinant enzyme also showed good hydrolytic ability to soybean meal, releasing galactose of $415.58\;{\mu}g/g$ soybean meal. When combined with trypsin, the enzyme retained over 90% degradability to soybean meal. These favorable properties make Aga-F78 a potential candidate for applications in the food and feed industries.

수박계통간 염색체수준의 유전적변이 분석 (Genome-wide analysis of sequence variations in eight inbred watermelon lines)

  • 김윤성;고찬섭;양희범;강순철
    • Journal of Plant Biotechnology
    • /
    • 제43권2호
    • /
    • pp.164-173
    • /
    • 2016
  • 수박의 형태적 변이의 유전적 원인을 분석해 보기 위해 8개 계통에서 re-sequencing을 수행하였다. 유전적 변이의 수는 염색체에 따라 다르게 나왔으며 발견된 SNP의 약 12.9%만이 유전자내에서 발견되었고 나머지는 프로모터나 유전자 사이의 지역에서 발견되었다. SNP 밀도에 대한 분석 결과 염색체 6번의 말단지역에 변이가 집중되어 있는 것을 알 수 있었다. 또한 염색체 10과 11번에 잘 보존된 지역을 발견하였다. Pathway 분석을 통해 DIMBOA(일종의 항생제)-glucoside 분해 대사가 계통간 가장 차이나는 것으로 확인되었으며 이는 각 계통의 병저항성에서 차이가날 가능성을 시사하는 것이다. 당대사 관련 유전자 변이를 분석한 결과 alpha-galactosidase 유전자에 가장 변이가 많은 것으로 밝혀졌다. 이러한 연구 결과는 육종을 분자수준에서 이해하는 데 도움을 줄 것으로 생각한다.

파브리병에서의 심장 자기공명영상의 역할 (The Role of Cardiac MRI in the Diagnosis of Fabry Disease)

  • 홍유진;김영진
    • 대한영상의학회지
    • /
    • 제81권2호
    • /
    • pp.302-309
    • /
    • 2020
  • 파브리병(Fabry disease)은 매우 드문 X-연관 유전 대사 질환으로 알파 갈락토시다아제(alpha galactosidase A)의 결핍으로 인하여 다양한 세포 및 기관에 글리코스핑고지질(glycosphingolipid)의 축적을 초래하는 질환이다. 심장 침범이 비교적 흔하며 비정상적인 지질침착으로 인한 심근 염증, 좌심실 비대 및 심근 섬유증을 일으킨다. 심장 침범은 환자 예후를 결정하는 중요한 요인이므로 이를 진단하는 것은 매우 중요하다. 심장 자기공명영상은 심실의 기능, 부피 측정을 위한 표준기법으로 알려져 있으며 심근의 조직 변화를 볼 수 있는 유용한 기법이다. 특히 최근 많이 쓰이는 T1 지도화 기법을 통한 심근 조영 전 T1 수치를 이용하여 파브리병의 심장 침범을 조기 진단할 수 있으며 자기공명영상을 이용한 심근 질량 측정으로 치료 모니터링을 할 수 있다. 심장 자기공명영상은 파브리병 환자에서 다양한 역할을 할 수 있을 것으로 생각되며 이에 대해 정리해보고자 한다.

대한민국 울진 연안 해양에서 분리한 해양 미생물 Ruegeria sp. 50C-3의 동정 및 내열성 효소 생산 (Identification of a new marine bacterium Ruegeria sp. 50C-3 isolated from seawater of Uljin in Korea and production of thermostable enzymes)

  • 지원재;김종희;박재선;홍순광
    • 미생물학회지
    • /
    • 제52권3호
    • /
    • pp.344-351
    • /
    • 2016
  • 대한민국 동해안 울진 앞 바닷물로부터 50-C로 명명한 해양 미생물을 분리하였다. 50-C 균주는 그람-음성, 호기성 세균이며, 노란색 집락을 형성하고, 극성편모를 갖는 박테리아이다. 이 균주는 $20-50^{\circ}C$, pH 5.5-8.5 범위에서 자라며, 비교적 고온인 $40-50^{\circ}C$, pH 6.5-7.5, 2% (w/v) NaCl에서 최적 성장을 보인다. 16S rRNA 유전자 서열 분석결과 50C-3 균주는 Ruegeria 속에 속하는 R. intermedia CC-GIMAT-$2^T$, R. lacuscaerulensis ITI-$1157^T$의 16S rRNA 유전자 서열과 각각 99.4%, 96.98% 상동성을 보였다. 그러나 50C-3 균주는 운동성, 탄소이용능력, 효소생산능력 등의 생리학적 특성에서 두 균주와는 명확히 다른 특성을 보였다. 50C-3 균주의 DNA G+C content는 66.7 mol%이고, 주요한 respiratory quinone은 ubiquinone-10 (Q-10)이었다. 이와 같은 형태학적, 생리학적, 유전학적 특성을 비교하여, 50C-3 균주는 R. intermedia CC-GIMAT-$2^T$와 같은 종에 속하는 새로운 변종으로 판단되며 Ruegeria sp. 50C-3으로 명명하였다(KCTC23890 =DSM25519). 50C-3 균주는 cellulase, agarase 활성은 없었지만, alkaline phosphatase, ${\alpha}$-galactosidase, ${\beta}$-galactosidase를 생산하였고 이들 모두 $50^{\circ}C$ 에서도 활성이 좋은 내열성 효소일 것으로 판단되었다. 특히, ${\beta}$-galactosidase의 경우 $37^{\circ}C$에서 보다 $50^{\circ}C$에서의 활성이 1.9배 증가하여 산업적으로 활용성이 클 것으로 예상된다.