Browse > Article
http://dx.doi.org/10.7845/kjm.2016.6049

Identification of a new marine bacterium Ruegeria sp. 50C-3 isolated from seawater of Uljin in Korea and production of thermostable enzymes  

Chi, Won-Jae (Biological and Genetic Resource Assessment Division, National Institute of Biological Resource)
Kim, Jong-Hee (Department of Food and Nutrition, Seoil University)
Park, Jae-Seon (Department of Biological Science, Myongji University)
Hong, Soon-Kwang (Department of Biological Science, Myongji University)
Publication Information
Korean Journal of Microbiology / v.52, no.3, 2016 , pp. 344-351 More about this Journal
Abstract
A marine bacterium, designated as strain 50C-3, was isolated from a seawater sample collected from the East Sea of South Korea. The strain is a Gram-negative, aerobic, yellow colored polar-flagellated bacterium that grows at $20-50^{\circ}C$ and pH 5.5-8.5. Optimal growth occurred at $40-50^{\circ}C$, at pH 6.5-7.5, and in the presence of 2% (w/v) NaCl. Based on 16S rRNA gene sequence similarity, the isolate was considered to represent a member of the genus Ruegeria. The result of this analysis showed that strain 50C-3 shared 99.4% and 96.98% sequence similarity with Ruegeria intermedia CC-GIMAT-$2^T$ and Ruegeria lacuscaerulensis ITI-$1157^T$, respectively. Furthermore, strain 50C-3 showed clear differences from related strains in terms of several characteristics such as motility, carbon utilization, enzyme production, etc. The DNA G+C content was 66.7 mol%. Chemotaxonomic analysis indicated ubiquinone-10 (Q-10) as the predominant respiratory quinone. Based on phenotypic, chemotaxonomic, and phylogenetic characteristics, the isolate represents a novel variant of the Ruegeria intermedia CC-GIMAT-$2^T$, for which we named Ruegeria sp. 50C-3 (KCTC23890=DSM25519). Strain 50C-3 did not produce cellulase and agarase, but produced alkaline phosphatase, ${\alpha}$-galactosidase, and ${\beta}$-galactosidase. The three enzymes showed stable activities even at $50^{\circ}C$ and thus regarded as thermostable enzymes. Especially, the ${\beta}$-galactosidase activity enhanced by 1.9 times at $50^{\circ}C$ than that at $37^{\circ}C$, which may be very useful for industrial application.
Keywords
Ruegeria sp. 50C-3 KCTC23890: DSM25519; ${\alpha}$-galactosidase; ${\beta}$-galactosidase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Brummett, A.E., Schnicker, N.J., Crider, A., Todd, J.D., and Dey, M. 2015. Biochemical, kinetic, and spectroscopic characterization of Ruegeria pomeroyi DddW-A mononuclear iron-dependent DMSP lyase. PLoS One 10, e0127288.   DOI
2 Chen, J.M., Ding, L., Sui, X.C., Xia, Y.M., Wan, H.D., and Lu, T. 2016. Production of a bioactive sweetener steviolbioside via specific hydrolyzing ester linkage of stevioside with a ${\beta}$-galactosidase. Food Chem. 196, 155-160.   DOI
3 Christie-Oleza, J.A., Miotello, G., and Armengaud, J. 2012. Highthroughput proteogenomics of Ruegeria pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade. BMC Genomics 13, 73.   DOI
4 Chun, J., Lee, J.H., Jung, Y.Y., Kim, M.J., Kim, S.I., Kim, B.K., and Lim, Y.W. 2007. ExTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259-2261.   DOI
5 Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
6 Huo, Y.Y., Xu, X.W., Li, X., Liu, C., Cui, H.L., Wang, C.S., and Wu, M. 2011. Ruegeria marina sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 61, 347-350.   DOI
7 Achbergerova, L. and Nahalka, J. 2014. Degradation of polyphosphates by polyphosphate kinases from Ruegeria pomeroyi. Biotechnol. Lett. 36, 2029-2035.   DOI
8 Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, A., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein data base. Nucleic Acids Res. 25, 3389-3402.   DOI
9 Kampfer, P., Arun, A.B., Rekha, P.D., Busse, H.J., Young, C.C., and Glaeser, S.P. 2013. Ruegeria intermedia sp. nov., a moderately thermophilic bacterium isolated from a coastal hot spring. Int. J. Syst. Evol. Microbiol. 63, 2538-2544.   DOI
10 Zhou, D., Yin, D., Xiao, F., and Hao, J. 2015. Expressions of senescence-associated ${\beta}$-galactosidase and senescence marker protein-30 are associated with lens epithelial cell apoptosis. Med. Sci. Monit. 21, 3728-3735.   DOI
11 Martens, T., Heidorn, T., Pukall, R., Simon, M., Tindall, B.J., and Brinkhoff, T. 2006. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al., 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int. J. Syst. Evol. Microbiol. 56, 1293-1304.   DOI
12 Kim, Y.O., Park, S., Nam, B.H., Jung, Y.T., Kim, D.G., and Yoon, J.H. 2014. Ruegeria meonggei sp. nov., an alphaproteobacterium isolated from ascidian Halocynthia roretzi. Antonie van Leeuwenhoek 105, 551-558.   DOI
13 Kim, Y.O., Park, S., Nam, B.H., Kang, S.J., Hur, Y.B., Lee, S.J., Oh, T.K., and Yoon, J.H. 2012. Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi. Int. J. Syst. Evol. Microbiol. 62, 925-930.   DOI
14 Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK.
15 Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19, 161-207.
16 Lee, J., Whon, T.W., Shin, N.R., Roh, S.W., Kim, J., Park, S.K., Kim, M.S., Shin, K.S., Lee, J.S., Lee, K.C., et al. 2012. Reugeria conchae sp. nov. isolated from the ark claim in the South sea of Korea. Int. J. Syst. Evol. Microbiol. 62, 2851-2857.   DOI
17 Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159-167.   DOI
18 Muramatsu, Y., Uchino, Y., Kasai, H., Suzuki, K., and Nakagawa, Y. 2007. Ruegeria mobilis sp. nov., a member of the Alphaproteobacteria isolated in Japan and Palau. Int. J. Syst. Evol. Microbiol. 57, 1304-1309.   DOI
19 Park, S. and Yoon, J.H. 2012. Ruegeria arenilitoris sp. nov., isolated from the seashore sand around a seaweed farm. Antonie van Leeuwenhoek 102, 581-589.   DOI
20 Oh, K.H., Jung, Y.T., Oh, T.K., and Yoon, J.H. 2011. Ruegeria faecimaris sp. nov., isolated from a tidal flat sediment. Int. J. Syst. Evol. Microbiol. 61, 1182-1188.   DOI
21 Petursdottir, S.K. and Kristjansson, J.K. 1997. Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1, 94-99.   DOI
22 Sangwan, V., Tomar, S.K., Ali, B., Singh, R.R., and Singh, A.K. 2015. Production of ${\beta}$-galactosidase from Streptococcus thermophilus for galactooligosaccharides synthesis. J. Food Sci. Technol. 52, 4206-4215.   DOI
23 Riclea, R., Gleitzmann, J., Bruns, H., Junker, C., Schulz, B., and Dickschat, J.S. 2012. Algicidal lactones from the marine Roseobacter clade bacterium Ruegeria pomeroyi. Beilstein J. Org. Chem. 8, 941-950.   DOI
24 Ruger, H.J. and Hofle, M.G. 1992. Marine star-shaped-aggregate forming bacteria: Agrobacterium altanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agarobacterium gelatinovurum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom., rev. Int. J. Syst. Evol. Microbiol. 42, 133-143.
25 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
26 Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc., Newark, DE, USA.
27 Stackebrandt, E. and Ebers, J. 2006. Taxonomic parameters revisited: tarnished gold standard. Microbiol. Today 33, 152-155.
28 Temuujin, U., Chi, W.J., Park, J.S., Chang, Y.K., Song, J.Y., and Hong, S.K. 2012. Identification and characterization of a novel ${\beta}$-galactosidase from Victivallis vadensis ATCC BAA-548, an anaerobic fecal bacterium. J. Microbiol. 50, 1034-1040.   DOI
29 Stackebrandt, E. and Goebel, B.M. 1994. Taxonomic Note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846-849.   DOI
30 Arahal, D.R., Macian, M.C., Garay, E., and Pujalte, M.J. 2005. Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Reugeria gelatinovorans as Thalassobius gelatinovorus comb. nov.. Int. J. Syst. Evol. Microbiol. 55, 2371-2376.   DOI
31 Thomson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI
32 Uchino, Y., Hirata, A., Yokota, A., and Sugiyama, J. 1998. Reclassification of marine Agrobacterium speices: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregate sp. nov., nom. Rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Reugeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. Rev. J. Gen. Appl. Microbiol. 44, 201-210.   DOI
33 Vandecandelaere, I., Nercessian, O., Segaert, E., Achouak, W., Faimali, M., and Vandamme, P. 2008. Ruegeria Scottomollicae sp. nov., isolated from a marine electroactive biofilm. Int. J. Syst. Evol. Microbiol. 58, 2726-2733.   DOI
34 Yi, H., Lim, Y.W., and Chun, J. 2007. Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int. J. Syst. Evol. Microbiol. 57, 815-819.   DOI
35 Zhang, J., Lu, L., Lu, L., Zhao, Y., Kang, L., Pang, X., Liu, J., Jiang, T., Xiao, M., and Ma, B. 2016. Galactosylation of steroidal saponins by ${\beta}$-galactosidase from Lactobacillus bulgaricus L3. Glycoconj. J. 33, 53-62.   DOI