• Title/Summary/Keyword: Alpha-2 antagonist

Search Result 178, Processing Time 0.03 seconds

Biodistribution of 99mTc Labeled Integrin Antagonist

  • Jang, Beom-Su;Park, Seung-Hee;Shin, In Soo;Maeng, Jin-Soo;Paik, Chang H.
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • The selective targeting of an integrin ${\alpha}_v{\beta}_3$ receptor using radioligands may enable the assessment of angiogenesis and integrin ${\alpha}_v{\beta}_3$ receptor status in tumors. The aim of this research was to label a peptidomimetic integrin ${\alpha}_v{\beta}_3$ antagonist (PIA) with $^{99m}Tc(CO)_3$ and to test its receptor targeting properties in nude mice bearing receptor-positive tumors. PIA was reacted with tris-succinimidyl aminotriacetate (TSAT) (20 mM) as a PIA per TSAT. The product, PIA-aminodiacetic acid (ADA), was radiolabeled with $[^{99m}Tc(CO)_3(H_2O)_3]^{+1}$, and purified sequentially on a Sep-Pak C-18 cartridge followed by a Sep-Pak QMA anion exchange cartridge. Using gradient C-18 reverse-phase HPLC, the radiochemical purity of $^{99m}Tc(CO)_3$-ADA-PIA (retention time, 10.5 min) was confirmed to be > 95%. Biodistribution analysis was performed in nude mice (n = 5 per time point) bearing receptor-positive M21 human melanoma xenografts. The mice were administered $^{99m}Tc(CO)_3$-ADA-PIA intravenously. The animals were euthanized at 0.33, 1, and 2 hr after injection for the biodistribution study. A separate group of mice were also co-injected with 200 ${\mu}g$ of PIA and euthanized at 1 hr to quantify tumor uptake. $^{99m}Tc(CO)_3$-ADA-PIA was stable in phosphate buffer for 21 hr, but at 3 and 6 hr, 7.9 and 11.5% of the radioactivity was lost as histidine, respectively. In tumor bearing mice, $^{99m}Tc(CO)_3$-ADA-PIA accumulated rapidly in a receptor-positive tumor with a peak uptake at 20 min, and rapid clearance from blood occurring primarily through the hepatobiliary system. At 20 min, the tumor-to-blood ratio was 1.8. At 1 hr, the tumor uptake was 0.47% injected dose (ID)/g, but decreased to 0.12% ID/g when co-injected with an excess amount of PIA, indicating that accumulation was receptor mediated. These results demonstrate successful $^{99m}TC$ labeling of a peptidomimetic integrin antagonist that accumulated in a tumor via receptor-specific binding. However, tumor uptake was very low because of low blood concentrations that likely resulted from rapid uptake of the agent into the hepatobiliary system. This study suggests that for $^{99m}Tc(CO)_3$-ADA-PIA to be useful as a tumor detection agent, it will be necessary to improve receptor binding affinity and increase the hydrophilicity of the product to minimize rapid hepatobiliary uptake.

The Analgesic Effect of Bee Venom Aqua-acupuncture and Its Mechanism in the Rat Model with adjuvant-induced Arthritis (봉독약침(蜂毒藥鍼)이 Adjuvant 유발(誘發) 관절염(關節炎)에 미치는 진통효과(鎭痛效果) 및 그 기전(機轉)에 관한 연구(硏究))

  • Seo, Dong-min;Park, Dong-suk;Kang, Sung-keel
    • Journal of Acupuncture Research
    • /
    • v.20 no.2
    • /
    • pp.85-97
    • /
    • 2003
  • Introduction : In this study, the analgesic effect and its mechanism of bee venom aqua-acupuncture on complete Freund's adjuvant-induced arthritis in rats was investigated. It has been reported from a neurochemical standpoint that bee venom exerts antinociceptive effects on inflammation and that the opioid system and adrenergic system play important roles in acupuncture analgesia. however, it is not known whether central opioid and ${\alpha}2$-adrenergic components of the intrinsic descending analgesic system are activated after bee venom aqua-acupuncture. Methods : Bee venom(1mg/kg) was subcutaneously aqua-acupunctured into Joksamni($ST_{36}$) of rats with complete Freund's adjuvant(CFA)- induced arthritis and was checked of increase in TFL. Opioid and ${\alpha}_2$-adrenergic neurotransmitter system were examined by naloxone as an opioid receptor antagonist, and yohimbine as ${\alpha}_2$-adrenoceptor antagonist prior to bee venom aqua-acupuncture. Results : The following results have been obtained. 1. The tail flick latency in the rat model with adjuvant-induced arthritis was significantly decreased in 2 weeks. 2. The tail flick latency in the rat model with adjuvant-induced arthritis was increased in bee venom aqua-acupuncture group compared to the normal saline aqua-acupuncture group. 3. Analgesic effect of bee venom was antagonized by yohimbine not by naloxone pretreatment in the rat model adjuvant-induced arthritis. Conclusions : Bee venom aqua-acupuncture has an analgesic effect on the rat model of adjuvant-induced of adjuvant-induced arthritis and has antinociception mediated by ${\alpha}_2$-adrenergic system.

  • PDF

The Modulatory Role of Spinally Located Histamine Receptors in the Regulation of the Blood Glucose Level in D-Glucose-Fed Mice

  • Sim, Yun-Beom;Park, Soo-Hyun;Kim, Sung-Su;Kim, Chea-Ha;Kim, Su-Jin;Lim, Su-Min;Jung, Jun-Sub;Ryu, Ohk-Hyun;Choi, Moon-Gi;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (${\alpha}$-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with ${\alpha}$-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, ${\alpha}$-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

Involvement of Selective Alpha-2 Adrenoreceptor in Sympathetically Maintained Pain

  • Park, Chan-Hong;Yong, An;Lee, Sang-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.6
    • /
    • pp.420-423
    • /
    • 2010
  • Objective : Peripheral nerve injury often leads to neuropathic pain, which is characterized by burning pain, allodynia, and hyperalgesia. The role of the sympathetic nervous system in neuropathic pain is a complex and controversial issue. It is generally accepted that the alpha adrenoreceptor (AR) in sympathetic nerve system plays a significant role in the maintenance of pain. Among alpha adrenoreceptor, alpha-1 receptors play a major role in the sympathetic mediated pain. The primary goal of this study is to test the hypothesis that sympathetically maintained pain involves peripheral alpha-2 receptors in human. Methods : The study was a randomized, prospective, double-blinded, crossover study involving twenty patients. The treatments were : Yohimbine (30 mg mixed in 500 mL normal saline), and Phentolamine (1 mg/kg in 500 mL normal saline) in 500 mL normal saline at 70 mL/hr initially then titrated. The patients underwent infusions on three different appointments, at least one month apart. Thus, all patients received all 2 treatments. Pain measurement was by visual analogue scale, neuropathic pain questionnaire, and McGill pain questionnaire. Results : There were significant decreases in the visual analogue scale, neuropathic score, McGill pain score of yohimnine, and phentolamine. Conclusion : We conclude that alpha-2 adrenoreceptor, along with alpha-2 adrenoreceptor, may be play role in sympathetically maintained pain in human.

Studies on Involvement of Central GABAergic Mechanism and Central ${\alpha}_{2}-Adrenoceptors$ in Pressor Responses to Raised Intracranial Pressure (두개내압상승에 의한 혈압상승작용과 중추 GABA계 및 중추 ${\alpha}_{2}$-아드레날린 수용체와의 관계)

  • Kim, Yung-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 1993
  • Recent studies have shown that a GABAergic mechanism in the brain modulates arterial blood pressure (BP) through alterations of sympathetic activity in the brain. The purpose of the present study was to determine if this modulation is involved in the pressor response to raised intracranial pressure (ICP). The pressor response to raised ICP was abolished by pretreatment of anesthetized rabbits with intracerebroventricular (icv) muscimol (a GABA agonist) as well as with icv clonidine $(an\;{\alpha}_2-agonist)$. Raising ICP in the hypertensive state after icv yohimbine $(an\;{\alpha}_2-antagonist)$ did not cause an additional increase in the BP, whereas raising ICP in the hypertensive state following icv bicuculline (a GABA antagonist) produced a further increase. Bicuculline produced an increase of the BP which had been lowered by muscimol or by clonidine, whereas it failed to increase the hypertensive state induced by either previous yohimbine or raised ICP. Yohimbine reversed the BP which had been made low by clonidine but was incapable of raising the hypotensive state after muscimol. Yohimbine failed to increase the heightened BP due to raised ICP, whereas bicuculline-induced pressor state was further elevated by yohimbine. Muscimol, besides the bicuculline-antagonizing property, inhibited the pressor response to yohimbine, suggesting participation of a GABAergic mechanism in the pressor action of yohimbine. From these results it was inferred that there were three ways in which BP could be increased via raised ICP: inactivation of the inhibitory sympathetic activity through (1) ${\alpha}_{2}-adrenoceptors$, (2) bicuculline-sensitive GABA receptors, (3) yohimbine-sensitive, clonidine-acting GABAergic sites.

  • PDF

Hop Extract Produces Antinociception by Acting on Opioid System in Mice

  • Park, Soo-Hyun;Sim, Yun-Beom;Kang, Yu-Jung;Kim, Sung-Su;Kim, Chea-Ha;Kim, Su-Jin;Seo, Jee-Young;Lim, Su-Min;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.187-192
    • /
    • 2012
  • In the present study, the antinociceptive profiles of hop extract were characterized in ICR mice. Hop extract administered orally (from 25 to 100 mg/kg) showed an antinociceptive effect in a dose-dependent manner as measured in the acetic acid-induced writhing test. Antinociceptive action of hop extract was maintained at least for 60 min. Moreover, cumulative response time of nociceptive behaviors induced with intraplantar formalin injection was reduced by hop extract treatment during the 2nd phases. Furthermore, the cumulative nociceptive response time for intrathecal injection of substance P ($0.7{\mu}g$) or glutamate ($20{\mu}g$) was diminished by hop extract. Intraperitoneal pretreatment with naloxone (an opioid receptor antagonist) attenuated antinociceptive effect induced by hop extract in the writhing test. However, methysergide (a 5-HT serotonergic receptor antagonist) or yohimbine (an ${\alpha}_2$-adrenergic receptor antagonist) did not affect antinociception induced by hop extract in the writhing test. Our results suggest that hop extract shows an antinociceptive property in various pain models. Furthermore, the antinociceptive effect of hop extract may be mediated by opioidergic receptors, but not serotonergic and ${\alpha}_2$-adrenergic receptors.

Effects of phenylephrine-induced PKC activation on Mg2+ release in guinea pig heart and isolated ventricular myocytes (기니픽 심장과 심근세포에서 Phenylephrine에 의한 PKC 활성화가 Mg2+ 유리에 미치는 영향)

  • Chang, Sung-eun;Kang, Hyung-sub;Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.29-42
    • /
    • 1998
  • $Mg^{2+}$ is one of the most abundant divalent cations in mammalian body(0.2~1.0mM) and the important physiological roles are : first, the cofactor of many enzyme activities, second, the regulator of glycolysis and DNA synthesis, third, the important role of bioenergetics by regulating of phosphorylation, fourth, the influence of cardiac metabolism and function. In this work we have investigated the regulation of the $Mg^{2+}$ induced by ${\alpha}_1-adrenoceptor$ stimulation in perfused guinea pig hearts and isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles, and the left ventricular pressure. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}-free$ medium. ${\alpha}_1-Agonists$ such as phenylephrine and methoxamine were found to induce $Mg^{2+}$ efflux in both perfused hearts and myocytes. These effects were blocked by prazosin, an ${\alpha}_1-adrenoceptor$ antagonist. The $Mg^{2+}$ influx could also be induced by phenylephrine and R59022, a diacylglycerol kinase inhibitor. In the presence of protein kinase C(PKC) inhibitors, phenylephrine produced an increase in $Mg^{2+}$ efflux from perfused hearts. Furthermore, $Mg^{2+}$ efflux by phenylephrine was amplified by phorbol 12-myristate 13-acetate(PMA). This enhancement of $Mg^{2+}$ efflux by PMA was blocked by prazosin in perfused hearts. By contrast, the $Mg^{2+}$ influx could be induced by verapamil, nifedipine, ryanodine in perfused hearts, but not in myocytes. $W^7$, a $Ca^{2+}$/calmodulin antagonist, completely blocked the phenylephrine-induced $Mg^{2+}$ efflux in perfused hearts. In conclusion, $Mg^{2+}$ is responsible for the cardiac activity associated with ${\alpha}_1-adrenoceptor$ stimulation. The mobilization of $Mg^{2+}$ is decreased or increased by ${\alpha}_1-adrenoceptor$ stimulation in guinea pig hearts. These responses may be related specifically to the respective pathways of signal transduction. A decrease in $Mg^{2+}$ efflux by ${\alpha}_1-adrenoceptor$ stimulation in hearts can be through PKC dependent and intracellular $Ca^{2+}$ levels.

  • PDF

Regulation of $Mg^{2+}$ Release in Guinea Pig Heart and Isolated Ventricular Myocytes by ${\alpha}_1-Adrenergic$ Stimulation (기니픽 심장과 심근 세포에서 ${\alpha}_1-Adrenergic$ 자극에 의한 $Mg^{2+}$ 유리조절)

  • Kang, Hyung-Sub;Chang, Sung-Eun;Kim, Jin-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.717-730
    • /
    • 1997
  • $Mg^{2+}$ is the fourth most abundant cation in cellular organisms. Although the biological chemistry and the physiological roles of the magnesium ion were well known, the regulation of intracellular $Mg^{2+}$ in mammalian cells is not fully understood. More recently, however, the mechanism of $Mg^{2+}$ mobilization by hormonal stimulation has been investigated in hearts and in myocytes. In this work we have investigated the regulation mechanism responsible for the $Mg^{2+}$ mobilization induced by ${\alpha}1-adrenoceptor$ stimulation in perfused guinea pig hearts or isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}$-free medium. ${\alpha}1-Agonists$ such as phenylephrine were found to induce $Mg^{2+}$ efflux in both perfused hearts or myocytes. This was blocked by prazosin, a ${\alpha}1-adrenoceptor$ antagonist. $Mg^{2+}$ efflux by phenylephrine was amplified by $Na^+$ channel blockers, an increase in extracellular $Ca^{2+}$ or a decrease in extracellular $Na^+$. By contrast, the $Mg^{2+}$ influx was induced by verapamil, nifedipine, ryanodine, lidocaine or tetrodotoxin in perfused hearts, but not in myocytes. $W_7$, a $Ca^{2+}/calmodulin$ antagonist, completely blocked the pheylephrine-, A23187-, veratridine-, $Ca^{2+}-induced$ $Mg^{2+}$ efflux in perfused hearts or isolated myocytes. In addition, $Mg^{2+}$ efflux was induced by $W_7$ in myocytes but not in perfused heart. In conclusion, An increase in $Mg^{2+}$ efflux by ${\alpha}1-adrenoceptor$ stimulation in hearts can be through $IP_3$ and $Ca^{2+}-calmodulin$ dependent mechanism.

  • PDF

Involvement of Adenosine in Cardioprotective Effect of Catecholamine Preconditioning in Ischemia-Reperfused Heart of Rat

  • Kim, Young-Hoon;Kim, Chan-Hyung;Kim, Gi-Tae;Kim, In-Kyu;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.753-761
    • /
    • 1998
  • Preconditioning of a heart with small doses of catecholamines induces a tolerance against the subsequent lethal ischemia. The present study was performed to find a specific receptor pathway involved with the catecholamine preconditioning and to test if adenosine plays a role in this cardioprotective effect. Isolated rat hearts, pretreated with small doses of ${\alpha}-\;or\;{\beta}-adrenergic$ agonists/antagonists, were subjected to 20 minutes ischemia and 20 minutes reperfusion by Langendorff perfusion method. Cardiac mechanical functions, lactate dehydrogenase and adenosine release from the hearts were measured before and after the drug treatments and ischemia. In another series of experiments, adenosine $A_1\;or\;A_2$ receptor blockers were treated prior to administration of adrenergic agonists. Pretreatments of a ${\beta}-agonist,\;isoproterenol(10^{-9}{\sim}10^{-7}\;M)$ markedly improved the post-ischemic mechanical function and reduced the lactate dehydrogenase release. Similar cardioprotective effect was observed with an ?-agonist, phenylephrine pretreatment, but much higher $concentration(10^{-4}\;M)$ was needed to achieve the same degree of cardioprotection. The cardioprotective effects of isoproterenol and phenylephrine pretreatments were blocked by a ${\beta}_1-adrenergic$ receptor antagonist, atenolol, but not by an ${\alpha}_1-antagonist,$ prazosin. Adenosine release from the heart was increased by isoproterenol, and the increase was also blocked by atenolol, but not by prazosin. A selective $A_1-adenosine$ receptor antagonist, 1,3-dipropyl-8-cyclopentyl xanthine (DPCPX) blocked the cardioprotection by isoproterenol pretreatment. These results suggest that catecholamine pretreatment protects rat myocardium against ischemia and reperfusion injury by mediation of ${\beta}_1-adrenergic$ receptor pathway, and that adenosine is involved in this cardioprotective effect.

  • PDF

Sequence to Structure Approach of Estrogen Receptor Alpha and Ligand Interactions

  • Chamkasem, Aekkapot;Toniti, Waraphan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2161-2166
    • /
    • 2015
  • Estrogen receptors (ERs) are steroid receptors located in the cytoplasm and on the nuclear membrane. The sequence similarities of human $ER{\alpha}$, mouse $ER{\alpha}$, rat $ER{\alpha}$, dog $ER{\alpha}$, and cat $ER{\alpha}$ are above 90%, but structures of $ER{\alpha}$ may different among species. Estrogen can be agonist and antagonist depending on its target organs. This hormone play roles in several diseases including breast cancer. There are variety of the relative binding affinity (RBA) of ER and estrogen species in comparison to $17{\beta}-estradiol$ (E2), which is a natural ligand of both $ER{\alpha}$ and $ER{\beta}$. The RBA of the estrogen species are as following: diethyl stilbestrol (DES) > hexestrol > dienestrol > $17{\beta}-estradiol$ (E2) > 17- estradiol > moxestrol > estriol (E3) >4-OH estradiol > estrone-3-sulfate. Estrogen mimetic drugs, selective estrogen receptor modulators (SERMs), have been used as hormonal therapy for ER positive breast cancer and postmenopausal osteoporosis. In the postgenomic era, in silico models have become effective tools for modern drug discovery. These provide three dimensional structures of many transmembrane receptors and enzymes, which are important targets of de novo drug development. The estimated inhibition constants (Ki) from computational model have been used as a screening procedure before in vitro and in vivo studies.