• 제목/요약/키워드: Alpha-2 antagonist

검색결과 178건 처리시간 0.02초

Effect of Ca2+ on contractile responses induced by perivascular nerve stimulation in isolated coronary artery of pig

  • Hong, Yong-geun;Shim, Cheol-soo;Kim, Joo-heon
    • 대한수의학회지
    • /
    • 제39권4호
    • /
    • pp.702-709
    • /
    • 1999
  • The present study was performed to elucidate the effects of extracellular $Ca^{2+}$ on contractile responses in isolated porcine coronary artery ring using by perivascular nerve stimulation (PNS). Especially, the study was focused on the source of $Ca^{2+}$ on $P_{2X}$-purinoceptor mediated muscle contraction which one of $P_2$-purinoceptor subtypes. The following results can be drawn from these studies : 1. The phasic contractions induced by PNS were inhibited with muscarinic receptor antagonist, atropine ($10^{-6}M$). 2. The phasic contractions induced by PNS were significantly inhibited by sequential treatment with atropine and adrenergic neural blocker, guanethidine ($10^{-6}M$). 3. The phasic contractions induced by PNS were inhibited with $P_{2X}$-purinoceptor desensitization by repetitive application of $\alpha$,$\beta$-Me ATP ($10^{-4}M$). 4. The phasic contractions induced by PNS were so weakened in calcium-free medium. 5. The phasic contractions induced by PNS were inhibited with calcium channel blocker, verapamil ($10^{-6}{\sim}5{\times}10^{-6}M$). 6. The phasic contractions induced by PNS on pretreated with verapamil ($10^{-6}{\sim}5{\times}10^{-6}M$) were not changed by $\alpha$,$\beta$-Me ATP ($10^{-4}M$). These results demonstrate that the neurogenic phasic contractions induced by PNS are due to adrenergic-, cholinergic- and $P_{2X}$-purinergic receptors and the origin of $Ca^{2+}$ on $P_{2X}$-purinoceptor mediated muscle contraction is extracellular $Ca^{2+}$ through plasmalemmal $Ca^{2+}$ channels.

  • PDF

Serum Levels of Type 2 Chemokines in Lepromatous Leprosy Patients

  • Lew, Wook;Nakamura, Koichiro;Tada, Yayoi;Kwahck, Ho;Chang, Soo Kyoung;Tamaki, Kunihiko
    • IMMUNE NETWORK
    • /
    • 제2권4호
    • /
    • pp.223-226
    • /
    • 2002
  • Background: The type 2 deviated immunological state is predominant in lepromatous leprosy. Erythema nodosum leprosum (ENL) is an immune-complex mediated reaction that typically occurs in lepromatous leprosy. To date, the serum levels of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-2 receptor, IL-10, IL-$1{\beta}$, IL-1 receptor antagonist and monocyte chemoattractant protein-1 (MCP-1) were reported to be higher in lepromatous leprosy. TNF-${\alpha}$ is also known to be higher in ENL, which is reduced after thalidomide treatment. However the serum type 2 chemokine levels in lepromatous leprosy patients have not been reported. Methods: The serum levels of the type 2 chemokines such as thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) and eotaxin together with IL-12 and IL-10 in the sera from leprosy patients were detected using an enzyme-linked solvent assay (ELISA) method. Results: The Serum TARC, MDC, eotaxin, IL-10 and IL-12 levels in lepromatous leprosy patients were not significantly different from the normal control levels. The serum levels were not significantly different between the paucibacillary group and multibacillary group. The serum TARC or MDC levels in the ENL patients were more reduced after a treatment containing thalidomide. Conclusion: The type 2 chemokines are not related to the severity of lepromatous leprosy. The larger reducing effect of the TARC or MDC levels in ENL patients by a treatment containing thalidomide suggests the potential role of these chemokines in the development of ENL and the therapeutic mechanism of thalidomide.

Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca+-CAMK2A- CREB1 pathway

  • Hyosun, Park;Sungsin, Jo;Mi-Ae, Jang;Sung Hoon, Choi;Tae-Hwan, Kim
    • BMB Reports
    • /
    • 제55권12호
    • /
    • pp.627-632
    • /
    • 2022
  • Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts.

Activation of Lysophosphatidic Acid Receptor Is Coupled to Enhancement of $Ca^{2+}$ -Activated Potassium Channel Currents

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Hwang, Sung-Hee;Lee, Sang-Mok;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권3호
    • /
    • pp.223-228
    • /
    • 2013
  • The calcium-activated $K^+$ ($BK_{Ca}$) channel is one of the potassium-selective ion channels that are present in the nervous and vascular systems. $Ca^{2+}$ is the main regulator of $BK_{Ca}$ channel activation. The $BK_{Ca}$ channel contains two high affinity $Ca^{2+}$ binding sites, namely, regulators of $K^+$ conductance, RCK1 and the $Ca^{2+}$ bowl. Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is one of the neurolipids. LPA affects diverse cellular functions on many cell types through G protein-coupled LPA receptor subtypes. The activation of LPA receptors induces transient elevation of intracellular $Ca^{2+}$ levels through diverse G proteins such as $G{\alpha}_{q/11}$, $G{\alpha}_i$, $G{\alpha}_{12/13}$, and $G{\alpha}s$ and the related signal transduction pathway. In the present study, we examined LPA effects on $BK_{Ca}$ channel activity expressed in Xenopus oocytes, which are known to endogenously express the LPA receptor. Treatment with LPA induced a large outward current in a reversible and concentration-dependent manner. However, repeated treatment with LPA induced a rapid desensitization, and the LPA receptor antagonist Ki16425 blocked LPA action. LPA-mediated $BK_{Ca}$ channel activation was also attenuated by the PLC inhibitor U-73122, $IP_3$ inhibitor 2-APB, $Ca^{2+}$ chelator BAPTA, or PKC inhibitor calphostin. In addition, mutations in RCK1 and RCK2 also attenuated LPA-mediated $BK_{Ca}$ channel activation. The present study indicates that LPA-mediated activation of the $BK_{Ca}$ channel is achieved through the PLC, $IP_3$, $Ca^{2+}$, and PKC pathway and that LPA-mediated activation of the $BK_{Ca}$ channel could be one of the biological effects of LPA in the nervous and vascular systems.

Nefazodons투여 후 지각이상을 보인 환자 4례 (Nefazodone and Associated Perceptual Disturbance : A Report of Four Cases)

  • 김지연;송형석;조방현;김용구
    • 생물정신의학
    • /
    • 제6권2호
    • /
    • pp.259-263
    • /
    • 1999
  • Nefazodone, a newer antidepressant is a phenylpiperazine derivative that inhibits the reuptake of both norepinephrine and serotonin, and antagonizes $5-HT_{2A}$ and ${\alpha}_1$ adrenergic receptors. Compared with SSRIs, nefazodone caused the fewer activating symptoms, adverse gastrointestinal effects(nausea, diarrhea, anorexia) and adverse effects of sexual function, but is associated with the more dizziness, dry mouth, constipation, visual disturbances and confusion. We report on 4 cases of visual disturbances and hallucinations in patients taking nefazodone. It is not certain what mechanisms mediated these side effects, but three mechanisms are possible. 1) Nefazodone, as a 5-HT2 antagonist, might induce visual disturbances. 2) mCPP, metabolite of nefazodone might contribute to the hallucination through action on 5-HT receptor. 3) Dopaminergic enhancing activity of nefazodone might cause hallucination. These case report raises the possibility that dose-related perceptual disturbances may exist with nefazodone. The fact emphasizes the need to pay close attention to all possible drug interactions, particularly in patients treated with multiple psychoactive agents, older patients, and patients with decreased hepatic function.

  • PDF

Telmisartan Inhibits TNFα-Induced Leukocyte Adhesion by Blocking ICAM-1 Expression in Astroglial Cells but Not in Endothelial Cells

  • Jang, Changhwan;Kim, Jungjin;Kwon, Youngsun;Jo, Sangmee A.
    • Biomolecules & Therapeutics
    • /
    • 제28권5호
    • /
    • pp.423-430
    • /
    • 2020
  • Telmisartan is an angiotensin-II receptor blocker and acts as a selective modulator of peroxisome proliferator-activated receptor gamma (PPARγ). Several studies have demonstrated that telmisartan ameliorates depression and memory dysfunction and reduces brain inflammation. We hypothesized that the beneficial effects of telmisartan on brain could be due to modulation of the blood-brain barrier (BBB) function. Here, we examined the effect of telmisartan on tumor necrosis factor alpha (TNF-α)-induced expression of intercellular adhesion molecule 1 (ICAM-1) which plays an important role in leukocyte transcytosis through the BBB. Telmisartan blocked TNF-α-induced ICAM-1 expression and leukocyte adhesion in U87MG human glioma cells but showed no effect on human brain microvascular endothelial cells. In U87MG cells, a PPAR antagonist, GW9662 did not block the effect of telmisartan on ICAM1 expression but rather potentiated. Moreover, GW9662 caused no change in TNF-α-induced ICAM-1 expression, suggesting no implication of PPARγ in the telmisartan effect. Further studies showed that telmisartan blocked TNF-α-induced activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and nuclear factorkappa B (NF-κB). In contrast, inhibitors of JNK, ERK1/2 and NF-κB but not p38, blocked ICAM-1 expression induced by TNF-α. Thus, our findings suggest that the beneficial effect of telmisartan is likely due to the reduction of astrocytic ICAM1 expression and leukocytes adhesion to astrocytes, and that this response was mediated by the inhibition of JNK/ERK1/2/NF-κB activation and in the PPAR-independent manner. In conclusion, this study enhances our understanding of the mechanism by which telmisartan exerts the beneficial brain function.

Characterization of Acetylcholine-induced Currents in Male Rat Pelvic Ganglion Neurons

  • Park, Joong-Hyun;Park, Kyu-Sang;Cha, Seung-Kyu;Lee, Keon-Il;Kim, Min-Jung;Park, Jong-Yeon;Kong, In-Deok;Lee, Joong-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권4호
    • /
    • pp.219-225
    • /
    • 2004
  • The pelvic ganglia provide autonomic innervations to the various urogenital organs, such as the urinary bladder, prostate, and penis. It is well established that both sympathetic and parasympathetic synaptic transmissions in autonomic ganglia are mediated mainly by acetylcholine (ACh). Until now, however, the properties of ACh-induced currents and its receptors in pelvic ganglia have not clearly been elucidated. In the present study, biophysical characteristics and molecular nature of nicotinic acetylcholine receptors (nAChRs) were studied in sympathetic and parasympathetic major pelvic ganglion (MPG) neurons. MPG neurons isolated from male rat were enzymatically dissociated, and ionic currents were recorded by using the whole cell variant patch clamp technique. Total RNA from MPG neuron was prepared, and RT-PCR analysis was performed with specific primers for subunits of nAChRs. ACh dose-dependently elicited fast inward currents in both sympathetic and parasympathetic MPG neurons $(EC_{50};\;41.4\;{\mu}M\;and\;64.0\;{\mu}M,\;respectively)$. ACh-induced currents showed a strong inward rectification with a reversal potential near 0 mV in current-voltage relationship. Pharmacologically, mecamylamine as a selective antagonist for ${\alpha}3{\beta}4$ nAChR potently inhibited the ACh-induced currents in sympathetic and parasympathetic neurons $(IC_{50};\;0.53\;{\mu}M\;and\;0.22\;{\mu}M,\;respectively)$. Conversely, ${\alpha}-bungarotoxin$, ${\alpha}-methyllycaconitine$, and $dihydro-{\beta}-erythroidine$, which are known as potent and sensitive blockers for ${\alpha}7$ or ${\alpha}4{\beta}2$ nAChRs, below micromolar concentrations showed negligible effect. RT-PCR analysis revealed that ${\alpha}3$ and ${\beta}4$ subunits were predominantly expressed in MPG neurons. We suggest that MPG neurons have nAChRs containing ${\alpha}3$ and ${\beta}4$ subunits, and that their activation induces fast inward currents, possibly mediating the excitatory synaptic transmission in pelvic autonomic ganglia.

Pro-Inflammatory Role of S1P3 in Macrophages

  • Heo, Jae-Yeong;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • 제27권4호
    • /
    • pp.373-380
    • /
    • 2019
  • Sphingosine kinase 1 and its product, sphingosine 1-phosphate (S1P), as well as their receptors, have been implicated in inflammatory responses. The functions of receptors $S1P_1$ and $S1P_2$ on cell motility have been investigated. However, the function of $S1P_3$ has been poorly investigated. In this study, the roles of $S1P_3$ on inflammatory response were investigated in primary peritoneal macrophages. $S1P_3$ receptor was induced along with sphingosine kinase 1 by stimulation of lipopolysaccharide (LPS). LPS treatment induced inflammatory genes, such iNOS, COX-2, $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. TY52156, an antagonist of $S1P_3$ suppressed the induction of inflammatory genes in a concentration dependent manner. Suppression of iNOS and COX-2 induction was further confirmed by western blotting and NO measurement. Suppression of $IL-1{\beta}$ induction was also confirmed by western blotting and ELISA. Caspase 1, which is responsible for $IL-1{\beta}$ production, was similarly induced by LPS and suppressed by TY52156. Therefore, we have shown $S1P_3$ induction in the inflammatory conditions and its pro-inflammatory roles. Targeting $S1P_3$ might be a strategy for regulating inflammatory diseases.

Effect of the Inhibition of Platelet Activating Factor on Oxidative Lung Injury Induced by Interleukin-$1\;{\alpha}$

  • Lee, Young-Man;Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.479-491
    • /
    • 1998
  • In order to know the pathogenesis of adult respiratory distress syndrome (ARDS) in association with the oxidative stress by neutrophils, the role of platelet activating factor (1-0-alkyl-2-acetyl-snglycero-3-phosphocholine, PAF) was investigated during acute lung injury induced by interleukin- $1{\alpha}$ (IL-1) in rats. An insufflation of IL-1 into the rat's trachea increased the acetyltransferase activity in the lung and the increase of PAF content was followed. As evidences of acute lung injury by neutrophilic respiratory burst, lung leak index, myeloperoxidase activity, numbers of neutrophils in the bronchoalveolar lavage fluid, neutrophilic adhesions to endothelial cells and NBT positive neutrophils were increased after IL-1 treatment. In addition, a direct instillation of PAF into the trachea caused acute lung leak and the experimental results showed a similar pattern in comparison with IL-1 induced acute lung injury. For the confirmation of oxidative stress during acute lung leak by IL-1 and PAF, a histochemical electron microscopy was performed. In IL-1 and PAF treated lungs of rats, the deposits of cerrous perhydroxide were found. To elucidate the role of PAF, an intravenous injection of PAF receptor antagonist, WEB 2086 was given immediately after IL-1 or PAF treatment. WEB 2086 decreased the production of hydrogen peroxide and the acute lung leak. In ultrastructural study, WEB 2086 mitigated the pathological changes induced by IL-1 or PAF. The nuclear factor kappa B (NFkB) was activated by PAF and this activation was inhibited by WEB 2086 almost completely. Based on these experimental results, it is suggested that the PAF produced in response to IL-1 through the remodeling pathway has the major role for acute lung injury by neutrophilic respiratory burst. In an additional experiment, we can also come to conclude that the activation of the NFkB by PAF is thought to be the fundamental mechanism to initiate the oxidative stress by neutrophils causing release of proinflammatory cytokines and activation of phospholipase $A_2$.

  • PDF

관상동맥이완과 혈소판응집에 대한 GS283과 GS386의 약리작용기전에 관한 연구 (Pharmacological Mechanism of Action of GS283 and GS386 on Human Platelet and Pig Coronary Artery)

  • 장기철;이회영;이균우;구의본;강영진;이영수
    • Biomolecules & Therapeutics
    • /
    • 제5권3호
    • /
    • pp.239-245
    • /
    • 1997
  • Trimetoquinol (TMQ) and its analogs are known to have thromboxane $A_2$ antagonistic action. We also reported that GS389, chemically similar to TMQ, has competitive antagonistic action in rat aorta and human platelets. In the present study, we investigated the pharmacological characteristics of GS283 and GS 386, analogs of GS389, using vascular smooth muscle, human platelets and rat brain homogenates. In isolated pig coronary artery (PCA), both of GS283 and GS386 relaxed U46619-contracted rings in concentration dependent manner. Pretreatment with several concentrations of GS283 and GS386 shifted the dose-response curves to the right, and reduced of maximum contration dose-dependently. Furthermore, GS283 and GS386 strongly inhibited $Ca^{2+}$ -induced contraction in the PCA. In human platelets, U46619- and A23187-induced platelet aggregation was inhibited by GS283 and GS386, concentration-dependently. Anti-platelet aggregation was related to the compound\`s ability to inhibit ATP release at each stimulation. In rat brain homogenates, receptor-binding assay resulted that both GS283 and GS386 have a relative affinity to $\alpha$-adrenergic receptor. Taken together. we concluded that the mechamism of action of GS283 and GS86 is not related with in TXA$_2$ receptor but concerned with calcium antagonistic action and a-blocking action.n.

  • PDF