• Title/Summary/Keyword: Alpha track

Search Result 57, Processing Time 0.025 seconds

Evaluation of Effective Dose and Exposure Level of Radon in Process Handling NORM (인산석고 취급공정에서의 라돈농도 및 유효선량 수준 평가)

  • Chung, Eun Kyo;Jang, Jae Kil;Kim, Jong Kyu;Kim, Joon Beom;Kwon, Jiwoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.283-291
    • /
    • 2018
  • Objectives: To monitor the radon concentration level in plants that handle phosphorus rock and produce gypsum board and cement, and evaluate the effective dose considering the effect of radon exposure on the human body. Methods: Airborne radon concentrations were measured using alpha-track radon detectors (${\alpha}$-track, Rn-tech Co., Korea) and continuous monitors (Radon Sentinel 1030, Sun Nuclear Co., USA). Radon concentrations in the air were converted to radon doses using the following equation to evaluate the human effects due to radon. H (mSv/yr) = Radon gas concentration x Equilibrium factor x Occupancy factor x Dose conversion factor. The International Commission on Radiological Protection (ICRP) used $8nSv/(Bq{\cdot}hr/m^3)$ as the dose conversion factor in 2010, but raised it by a factor of four to $33nSv/(Bq{\cdot}hr/m^3)$ in 2017. Results: Radon concentrations and effective doses in fertilizer manufacturing process averaged $14.3(2.7)Bq/m^3$ ($2.0-551.3Bq/m^3$), 0.11-0.54 m㏜/yr depending on the advisory authority and recommendation year, respectively. Radon concentrations in the gypsum-board manufacturing process averaged $14.9Bq/m^3$ at material storage, $11.4Bq/m^3$ at burnability, $8.1Bq/m^3$ at mixing, $10.0Bq/m^3$ at forming, $8.9Bq/m^3$ at drying, $14.7Bq/m^3$ at cutting, and $10.5Bq/m^3$ at shipment. It was low because it did not use phosphate gypsum. Radon concentrations and effective doses in the cement manufacturing process were $23.2Bq/m^3$ in the stowage area, $20.2Bq/m^3$ in the hopper, $16.8Bq/m^3$ in the feeder and $11.9Bq/m^3$ in the cement mill, marking 0.12-0.63 m㏜/yr, respectively. Conclusions: Workers handling phosphorous gypsum directly or indirectly can be assessed as exposed to an annual average radon dose of 0.16 to 2.04 mSv or 0.010 to 0.102 WLM (Working Level Month).

Tracking Algorithm Based on Moving Slide Window for Manuevering Target (이동표적을 위한 이동 창 함수 기반 추적 알고리즘)

  • Bae, Jinho;Lee, Chong Hyun;Jeon, Hyoung-Goo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.129-135
    • /
    • 2016
  • In this paper, we propose a novel tracking algorithm called slide window tracker (SWT) suitable for maneuvering target. To efficiently estimate trajectory of moving target, we adopt a sliding piecewise linear window which includes past trace information. By adjusting the window parameters, the proposed algorithm is to reduce measurement noise and to track fast maneuvering target with little computational increment as compared to ${\alpha}-{\beta}$ tracker. Throughout the computer simulations, we verify outstanding tracking performance of the SWT algorithm in noisy linear and nonlinear trajectories. Also, we show that the SWT algorithm is not sensitive to initial model parameter selection, which gives large degree of freedom in applying the SWT algorithm to unknown time-varying measurement environments.

Observation of a 2016 Ganymede stellar occultation event with the SOAO 0.6m telescope

  • Hinse, Tobias Cornelius;D'Aversa, Emiliano;Oliva, Fabrizio;Sindoni, Giuseppe
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.83.3-84
    • /
    • 2017
  • On 2016 April $13^{th}$ the Jovian satellite Ganymede occulted a $7^{th}$ magnitude star. The predicted occultation track (occultation shadow) crossed the Northern Pacific Ocean, Japan, and South Korea. Hence, it was a very favorable event due to the star brightness in order to be accessible for small-aperture telescopes as well. While no other similar event is expected for the next 10 years, only two occultation events are reported in the literature in the past, from Earth in 1972 and from Voyager, in large disagreement in respect to the atmospheric detection. However, evidence of an exosphere around Ganymede was inferred through H Lyman alpha emission detected by Galileo UVS, through HST/GHRS detection of far-UV atomic O airglow emissions, signature of dissociated molecular oxygen. We organized a short-notice international coordinated occultation monitoring network with the aim to search for a signature of Ganymede's exosphere in the occultation light-curve by using facilities on Mauna Kea (NASA-IRTF) and Sobaeksan Optical Astronomy Observatory (SOAO) in South Korea.

  • PDF

Effects of Amorphous Phase Fraction on the Scratch Response of NiTiZrSiSn Bulk Meatllic Glass in the Kinetic Spraying Process (저온분사공정을 통한 NiTiZrSiSn 벌크 비정질 코팅의 비정질 분율에 따른 스크래치 반응)

  • Yoon, Sang-Hoon;Kim, Soo-Ki;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.28-36
    • /
    • 2007
  • A bulk amorphous NiTiZrSiSn powder produced using an inert gas atomization was sprayed by kinetic spraying process that is basically a solid-state deposition process onto a mild steel substrate. They were successfully overlaid onto the mild steel substrate. In order to evaluate the tribological behavior of the kinetic sprayed NiTiZrSiSn BMG (Bulk Metallic Glass) coatings, a partially crystallized coating and a fully crystallized coating were prepared by the isothermal heat treatments. Tribological behaviors were investigated in view of friction coefficient, hardness and amorphous phase fraction of coating layer. Surface morphologies and depth in the wear tracks were observed and measured by scanning electron microscope and alpha-step. From the examination of the scratch wear track microstructure, transition from the ductile like deformation (micro cutting) to the brittle deformation (micro fracturing) in the scratch groove was observed with the increase of the crystallinity.

How to Enhance Perceived Usefulness, Ease of Use, and Fit of Wearables: An Exploratory Study about the Physical Attributes of Smart Wristbands and Smartwatches

  • Shim, Soo In;Yu, Heejeong
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.302-309
    • /
    • 2023
  • Wearable devices, attached to the human body, track and enhance users' activities, health, and communication. Therefore, considering ergonomic factors in product design is crucial. However, previous research has somewhat overlooked the importance of integrating ergonomic design elements into a broad spectrum of design factors. This study aims to examine the impact of physical attributes inherent in smart wristbands and smartwatches on the perceived functional value, specifically, perceived usefulness, ease of use, and fit. A survey was conducted among 289 US adults who had experience using smart wristbands or smartwatches. The collected data were analyzed using descriptive statistics, factor analysis, Cronbach's alpha, t-test, MANOVA, and regression analysis in SPSS version 29. The results showed that the shape of the front display significantly influenced perceived ease of use, and the product's weight had a substantial impact on both perceived ease of use and fit. Furthermore, distinct technical features on the front display had varied effects on perceived usefulness, ease of use, and fit. Notably, the presence of activity tracking, alarm, and calendar functionalities led to distinct differences in ease of use and fit. Features such as distance tracking, phone call, social media notifications, text messaging, and time display functions showed significant influences on the perception of fit. These findings provide insights into the physical values of smart wristbands and smartwatches as perceived by users.

The effect of geometrical parameters on the radon emanation coefficient and different radon parameters

  • Entesar H. El-Araby;A. Azazi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4096-4101
    • /
    • 2023
  • Radon is a radioactive gas produced from the uranium-238 series. Radon gas affects public health and is the second cause of lung cancer. The study samples were collected from one area of the city of Jazan, southwest of the Kingdom of Saudi Arabia. The influence of engineering and physical parameters on the emanation coefficient of gas and other gas parameters was studied. Parameters for radon were measured using a CR-39 Solid-State Nuclear Track Detector (SSNTD) through a sealed emission container. The results showed that the emanation coefficient was affected directly by the change in the grain size of the soil. All parameters of measured radon gas have the same behavior as the emanation coefficient. The relationship between particle size and emanation coefficient showed a good correlation. The values of the emanation coefficient were inversely affected by the mass of the sample, and the rest of the parameters showed an inverse behavior. The results showed that increasing the volume of the container increases the accumulation of radon sons on the wall of the container, which increases the emission factor. The rest of the parameters of radon gas showed an inverse behavior with increasing container size. The results concluded that changing the engineering and physical parameters has a significant impact on both the emanation coefficient and all radon parameters. The emanation coefficient affects the values of the radiation dose of an alpha particle.

Fouling Study with Binary Protein Mixtures in Microfilration (이성분계 단백질 혼합물의 미세막 분리공정에서 막오염에 관한 연구)

  • Ahn, Byung Hun;Moon, Dong Ju;Yoo, Kye Sang;Ho, Chia Chi
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.236-242
    • /
    • 2005
  • Membrane fouling by protein mixtures during microfiltration has been investigated for binary mixtures of bovine serum albumin (BSA), casein, lysozyme, pepsin, and ovalbumin. Filtration experiments were carried out using $0.2{\mu}m$ polycarbonate track-etched (PCTE) membrane in a stirred cell under constant transmembrane pressure (14 kPa) and concentration of hydrogen ion (pH=11) to study the effect of mixture composition on filtrate flux decline. Flux decline data were analyzed using a pore blockage-cake formation model developed recently. It was found that the model is in a good agreement with the experimental data. Fouling parameters such as the rate of pore blockage(${\alpha}$), the initial resistance of the protein deposit ($R_{po}$) and the increasing rate of the protein layer resistance(${\beta}$) were used to evaluate the rate of filtrate flow by membrane fouling in the binary mixture system. Generally, the trend of ${\alpha}$ is comparable with that of filtrate flux decline. It was also found that fast flux decreasing was observed over the binary mixture containing casein. The result is due to high value of the initial resistance of the protein deposit ($R_{po}$) over casein.

Effects of Low Power Laser Irradiation on the Spinal Cord for the Functional Regeneration of Crushed Sciatic Nerve in Rats (흰쥐 좌골신경 압좌손상 후 척수분절의 저강도 레이저 조사가 운동기능 회복에 미치는 영향)

  • Kim, Souk-Boum;Kim, Dong-Hyun;Song, Ju-Min;Nam, Ki-Won;Kwon, Young-Shil;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.569-578
    • /
    • 2001
  • The purpose of the present study was to examine the functional recovery of the crushed sciatic nerve of rats after low-power laser irradiation applied to the corresponding segments of the spinal cord. After a crushed injury on the left sciatic nerve in rats. low-power laser irradiation was applied transcutaneously to corresponding segments of the spinal cord immediately after suture the wound by using 2000 mW, 2000Hz, 830 nm CaAIAs(Gallium-aluminum-arsenide) semiconductor diode laser. The laser treatment was performed with 10 minutes daily for 4 successive weeks. Functional recovery was evaluated per weekly following injury by sciatic function index(SFI),using data obtained by walking track analysis. For four weeks after crush injury, experimental group had significantly greater functional improvement than control group(${\alpha}$=0.05). In a experimental group, SFI was significantly increased for three weeks, but control group not increased for two weeks. This study suggests that low-power laser irradiation applied directly to the spinal cord can improve functional recovery of the crushed sciatic nerve in rats.

  • PDF

Kinematic Analysis of Mid-Race in Men's 100-m Final during IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 100 m 남자 결승전 중간질주구간의 운동학적 분석)

  • Ryu, Ji-Seon;Ryu, Jae-Kyun;Kim, Tae-Sam;Park, Young-Jin;Hwang, Won-Seob;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.511-520
    • /
    • 2011
  • The purpose of this study was to provide scientific information to track and field coaches and athletes through the analyses of the biomechanics characteristics of the top 4 sprinters in the men's 100 m final in the IAAF World Championships Daegu 2011. Twelve video cameras (Sony, Japan) were used to capture the mid portion of the race (40 m - 70 m) with a sampling frequency of 60Hz. Biomechanical variables including the right ankle, knee and hip angles, the trunk angle, and the velocity of center of mass (COM) in the running direction, were calculated with the Kwon 3D program (Visol, Korea). Correlation coefficients between the COM velocity and each variables were calculated using Matlab 2008a (MathWorks, USA) at an alpha level of 0.05. The findings indicated that Yohan Blake (JAM) showed greater range of motion at the ankle and hip. Walter Dix(USA) showed greater knee and trunk movement, and Kim Collins (SKN) showed more dorsi-flexed and extended trunk angles during the race. Finally, Christophe Lemaitre (FRA) showed more plantar-flexed ankle with a less trunk motion, throughout the analyzed race.

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF