• 제목/요약/키워드: Alongshore

검색결과 29건 처리시간 0.021초

An Analytical Investigation on the Build-up of the Temperature Field due to a Point Heat Source in Shallow Coastal Water with Oscillatory Alongshore-flow

  • Jung, Kyung-Tae;Kim, Chong-Hak;Jang, Chan-Joo;Lee, Ho-Jin;Kang, Sok-Kuh;Yjm, Ki-Dai
    • Ocean and Polar Research
    • /
    • 제25권1호
    • /
    • pp.63-74
    • /
    • 2003
  • The build-up of the heat field in shallow coastal water due to a point source has been investigated using an analytical solution of a time-integral form derived by extending the solutions by Holley(1969) and also presented in Harleman (1971). The uniform water depth is assumed with non-isotropic turbulent dispersion. The alongshore-flow is assumed to be uni-directional, spatially uniform and oscillatory. Due to the presence of the oscillatory alongshore-flow, the heat build-up occurs in an oscillatory manner, and the excess temperature thereby fluctuates in that course and even in the quasi-steady state. A series of calculations reveal that proper choices of the decay coefficient as well as dispersion coefficients are critical to the reliable prediction of the excess temperature field. The dispersion coefficients determine the absolute values of the excess temperature and characterize the shoreline profile, particularly within the tidal excursion distance, while the decay coefficient determines the absolute value of the excess temperature and the convergence rate to that of the quasi-steady state. Within the e-folding time scale $1/k_d$ (where $k_d$ is the heat decay coefficient), heat build-up occurs more than 90% of the quasi-steady state values in a region within a tidal excursion distance (L), while occurs increasingly less the farther we go to the downstream direction (about 80% at 1.25L, and 70% at 1.5L). Calculations with onshore and offshore discharges indicate that thermal spreading in the direction of the shoreline is reduced as the shoreline constraint which controls the lateral mixing is reduced. The importance of collecting long-term records of in situ meteorological conditions and clarifying the definition of the heat loss coefficient is addressed. Interactive use of analytical and numerical modeling is recommended as a desirable way to obtain a reliable estimate of the far-field excess temperature along with extensive field measurements.

바람영향하의 River plume에 따른 부유물체 확산 및 이동 연구 (The study of moving and dissipation of floating mines due to wind forced river plume)

  • 백성호;박경주
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.295-298
    • /
    • 2010
  • 본 논문에서는 강 하구 지역에 부유물체 유출시 물체의 이동과 확산 패턴을 파악하고자 plume의 생성과 변화, 외력에 대한 변동성을 연구하였다. 외력이 없는 경우 강수는 bulge와 alongshore current를 형성하며 연안을 따라 이동한다. Downwelling wind와 downcoast meanflow의 경우는 steady state와 동일한 패턴을 형성하나 수송은 강해져 연안을 따라 흐르는 물체의 이동과 확산속도가 증가할 것으로 예상된다. Upwelling wind가 부는 경우 Ekman transport에 의해 bulge가 연안으로부터 떨어져 45도 각도로 북서쪽으로 이동하는데 그 이동경로는 linear하며 바람의 세기로부터 독립적이다. 그리고 Bulge의 이동속도는 바람응력의 세기와 정비례한다. 따라서, 이 경우 부유물체의 upcoast로의 이동과 외해로의 확산이 예상된다.

  • PDF

A Three-Dimensional Numerical Study of Effects of Typhoons on Oceanographic Conditions in the Korea Strait

  • Hong, Chul-Hoon
    • Journal of the korean society of oceanography
    • /
    • 제34권2호
    • /
    • pp.73-85
    • /
    • 1999
  • When typhoons passed around the Korea Strait, some observation in this strait carried out by Mizuno et al. (1986) gives us the following oceanographic features; 1) the direction of the observed current was opposite to the northeasterly wind, 2) temperature rapidly increased having a time lag as the depth deepens, after then decreased with oscillation. A primitive equation ocean model that makes use of a sigma-coordinate system and incorporates a typhoon model was used to examine the mechanism to generate these phenomena. The model region covers the East China Sea, the Yellow Sea, and a portion of the East Sea (Japan Sea). The model well reproduces the observed features, especially in temperature field, and clearly manifests how the above observed features happened. From early time when the typhoon was located in low latitude, an alongshore northward current in the west of Kyushu (hereafter the West Kyushu Current) is generated by an alongshore wind in the typhoon. This current flows into the eastern channel, as a coastal jet, regardless to the wind field within the Korea Strait during this period. The above observed phenomena are generated by this current. The model results indicate that when typhoons pass around the Korea Strait, the West Kyushu Current is generated, and oceanographic condition in the strait should be greatly influenced by this current.

  • PDF

夏季 韓國 南東海域에서 湧昇과 關聯된 바람, 海水面 및 表層水溫의 變化 TEVARIATIONS OF SEA LEVEL AND SEA SURFACE TEPERATURE ASSOCIATED WITH WIND -INDUCED UPWELLING IN THE SOUTH

  • 이재철
    • 한국해양학회지
    • /
    • 제18권2호
    • /
    • pp.149-160
    • /
    • 1983
  • 해수면과 연안표층수온의 기록으로부터 바람에 의한 용승효과를 확인하기 위해서 1973년 부터 1979년까지의 자료들이 이용되었다. 하계에 남동해안에 평행한 바람이 우세하며 울기-감포 근해에서 용승을 일으키는 것으로 나타났는데 강한 남서풍이 3일 이상지속될 때 해수면과 표층수온이 감소하는 용승효과가 현저하게 나타났다. 평균적으로 한 번의 용승은 약10일동안 지속 되었고 그 동안에 해안에 평행안 성분의 평균풍속은 약 4.0m/sec였다.

  • PDF

동해 실시간 해양관측 부이로부터 관측한 태풍 매미에 대한 연안해양의 반응 고찰 (Observations on the Coastal Ocean Response to Typhoon Maemi at the East Sea Real-time Ocean Buoy)

  • 남성현;윤재열;김구
    • 한국해양학회지:바다
    • /
    • 제9권3호
    • /
    • pp.111-118
    • /
    • 2004
  • 한국 동해시에서 약 10 km떨어진 수심 130 m해역에 실시간 동해 해양관측 부이를 계류하여 기상(기온, 기압, 풍속, 순간최대풍속, 풍향, 상대습도) 및 해양(파랑, 해수물성, 전층해류) 자료를 실시간으로 수집하였다. 2003년 9월 13일 03:00에 태풍 매미의 눈이 한국 울진시 부근을 통과할 때, 순간최대풍속은 25 m/s(10분 평균풍속은 최대 20 m/s) 그리고 최저기압은 980 hPa로 기록되었다. 파고는 이로부터 한 시간 뒤인 04:00에 최대가 되었으며 유의파고는 4 m 그리고 최대파고는 9 m에 이르렀다. 표층부근에서 측정된 유속은 태풍의 눈이 통과한 뒤 점차 증가하여 약10시간 뒤인 13:00에는 약 100 cm/s에 달하였고 그 방향은 남남동이었다. 강한 남남동향류를 동반한 표층혼합층은 고온저염의 특성을 유지하였으며, 그 두께는 같은 10시간동안 20 m에서 40 m로 서서히 증가하였다. 일정경사면의 해저지형을 가지는 해양에서 해안선방향의 순간 바람에 대한 이층유체의 반응을 알아보기 위해 Csanady(1984)가 제안한 간단한 해석모형을 적용하였다. 그 결과 실시간 해양관측부이의 계류 위치(x=8.15 km)에서 태풍의 눈 통과 후 10시간동안 전개된 해안선 방향과 이에 수직한 방향의 유속구조와 상하층의 경계에 대한 적절한 추정치를 얻을 수 있었고, 태풍 매미 통과 후 동해시 연안해양의 특징적인 반응을 부분적으로 설명할 수 있었다.

제주 우도 홍조단괴해빈의 태풍 시기 지형변화 (Topographic Variability during Typhoon Events in Udo Rhodoliths Beach, Jeju Island, South Korea)

  • 윤우석;윤석훈;문재홍;홍지석
    • Ocean and Polar Research
    • /
    • 제43권4호
    • /
    • pp.307-320
    • /
    • 2021
  • Udo Rhodolith Beach is a small-scale, mixed sand-and-gravel beach embayed on the N-S trending rocky coast of Udo, Jeju Island, South Korea. This study analyzes the short-term topographic changes of the beach during the extreme storm conditions of four typhoons from 2016 to 2020: Chaba (2016), Soulik (2018), Lingling (2019), and Maysak (2020). The analysis uses the topographic data of terrestrial LiDAR scanning and drone photogrammetry, aided by weather and oceanographic datasets of wind, wave, current and tide. The analysis suggests two contrasting features of alongshore topographic change depending on the typhoon pathway, although the intensity and duration of the storm conditions differed in each case. During the Soulik and Lingling events, which moved northward following the western sea of the Jeju Island, the northern part of the beach accreted while the southern part eroded. In contrast, the Chaba and Maysak events passed over the eastern sea of Jeju Island. The central part of the beach was then significantly eroded while sediments accumulated mainly at the northern and southern ends of the beach. Based on the wave and current measurements in the nearshore zone and computer simulations of the wave field, it was inferred that the observed topographic change of the beach after the storm events is related to the directions of the wind-driven current and wave propagation in the nearshore zone. The dominant direction of water movement was southeastward and northeastward when the typhoon pathway lay to the east or west of Jeju Island, respectively. As these enhanced waves and currents approached obliquely to the N-S trending coastline, the beach sediments were reworked and transported southward or northward mainly by longshore currents, which likely acts as a major control mechanism regarding alongshore topographic change with respect to Udo Rhodolith Beach. In contrast to the topographic change, the subaerial volume of the beach overall increased after all storms except for Maysak. The volume increase was attributed to the enhanced transport of onshore sediment under the combined effect of storm-induced long periodic waves and a strong residual component of the near-bottom current. In the Maysak event, the raised sea level during the spring tide probably enhanced the backshore erosion by storm waves, eventually causing sediment loss to the inland area.

LARGE-SCALE CURRENTS AND SEA-BOTTOM ELEVATION CHANGE DEVELOPED BY WINTER STORMS

  • Sato, Shinji
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1996년도 정기학술강연회 발표논문 초록집
    • /
    • pp.89-94
    • /
    • 1996
  • Severe storms are frequently generated in winter along coasts on the Japan Sea side, which are developed by strong northwestern wind caused by periodic passages of low-pressure systems across the sea. The winter storm generally persists for several days, generating strong winds and large waves from northwest. During the storm, strong alongshore currents are also observed in the offshore region, which may continue to flow over a couple of days. (omitted)

  • PDF

Effect of the Bottom Slope on the Formation of Coastal Front and Shallow-Sea Structure during Cold-Air Outbreak

  • Cheong, Hyeong-Bin;Kim, Young-Seup;Hong, Sung-Keun;Cheong, Hyeong-Bin
    • Journal of the korean society of oceanography
    • /
    • 제32권3호
    • /
    • pp.93-102
    • /
    • 1997
  • Coastal circulations during the (surface condition of an) idealized cold-air outbreak are numerically investigated with two-dimensional, non-hydrostatic model in which a constant bottom-slope exists. The atmospheric forcing during a cold-air outbreak is incorporated as the surface cooling and the wind stress. When the offshore angle of the wind-stress vector, defined as the angle measured from the alongshore axis, is smaller than 45 degrees, a strong downwelling circulation develops near the coast. A sharp density front, which separates the vertically homogeneous region from the offshore stratified region, is formed near the coast and propagates offshore with time. Onshore side of the density front, small-scale circulation cells which are aligned in the direction perpendicular to the bottom begin to develop as the near-coast homogeneous region broadens. The surface cooling enhances greatly the development of the surface mixed layer by convective motions due to hydrostatic instability. The convective motions reach far below the hydrostatically unstable layer which is attached to the surface. The small-scale circulation cells are appreciably modified by the convetion cell and the density front develops far offshore compared to the case of no surface cooling. As to the effect of the bottom slope, the offshore distance of the density front increases (decreases) as the bottom slope decreases (increases), which results from the fact that the onshore volume-transport (Ekman transport) of the low-density upper seawater remains almost constant when the wind-stress is maintained constant. It is shown that the bottom slope is an essential factor for the formation of both the density front and the alongshore current when the surface cooling is the only forcing.

  • PDF

Predicting the Invasion Pathway of Balanus perforatus in Korean Seawaters

  • Choi, Keun-Hyung;Choi, Hyun-Woo;Kim, Il-Hoi;Hong, Jae-Sang
    • Ocean and Polar Research
    • /
    • 제35권1호
    • /
    • pp.63-68
    • /
    • 2013
  • The European Common Barnacle Balanus perforatus Brugiere (Crustacea, Cirripedia) has been introduced into the east coast of Korea, presumably via the ballast water of ships. The species has since been spreading along both the northern and southern coast to the east, most likely due to alongshore currents. We predicted the potential range expansion of Balanus perforatus in Korean waters using Genetic Algorithm for Rule-set Prediction (GARP), an environmental niche modeling technique. The results show that much of the southern coastal waters of Korea could be colonized by the spread of the nonindigenous species, but that the west coast is unlikely to be invaded. More sampling on the west coast would enhance the predictability of the model. To our knowledge, this is the first report of its kind for predicting marine nonindigenous species in Korean waters using GARP modeling.

연안역 구조물 주위에서의 해빈류의 수치해석에 관한 연구 (A Study on the Numerical Model of Wave Induced Current around Nearshore Structure)

  • 민병형;이상화;김인철
    • 한국해양공학회지
    • /
    • 제5권1호
    • /
    • pp.55-63
    • /
    • 1991
  • This study is to predict accurately the wave induced current accuring by the radiation stress which acts as the driving force around Nearshore structure. For the wave induced current, the depth integrated and time averaged governing equation of an unsteady nonlinear form is derived from the continuity and momentum equation of an incompressible fluid. Numerical solutions are obtained by a finite difference method for the governing equation. In the vicinity of a structure, computed flow patterns show good agreement with the hydraulic experimental data. The numerical results obtained by neglecting the convective term show a large change of alongshore and offshore current.

  • PDF