• Title/Summary/Keyword: Alluvial fan

Search Result 56, Processing Time 0.021 seconds

A Study on the Geomorphology and Activity of Jinbu Fault in Pyeongchang-gun, Gangwon Province (강원도 평창군 진부 단층의 지형 및 활동성)

  • Lee, Gwang-Ryul;Cho, Young-Dong;Kim, Dae-Sik
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.775-790
    • /
    • 2008
  • This study shows possibility of active fault, throughout analyzing distributional features of tectonic and fluvial geomorphology and mineral composition of fault fracture clay, at Jinbu fault-line system in Pyeongchang-gun, Gangwon Province. Fault-line valley was formed remarkably in the upper reaches of Odae River and upper reaches of Yeongok River according along Jinbu fault-line. Landforms show rectilineal distribution at right shore slopes of Odae River in Ganpyeong-ri, southern zone of Jinbu fault-line system, related to the tectonic processes, such as triangular facet, kernbut, kerncol and alluvial fan. Fault fracture clay zones were developed at 5 outcrops($jbf1{\sim}5$), located in kerncol. Particularly, jbf1 fault outcrop, developed at granite saprolite, has obvious fault plane and fault clay composed of illite and laumontite. The Jinbu Fault-line along jbf4-2-3-5 may be formed by regional compressive stress, and jbf1 fault may be suggested a tributary fault of the Jinbu fault-line formed before the late Pleistocene. The vertical displacement of the east and west blocks of the Jinbu Fault-line is estimated in $0.024{\sim}0.027m/ka$.

Current Status of Ginseng Cultivation and Soil Characteristics of Northeastern Three Provinces in China

  • Park, Yang Ho;Kim, Jang Uk;Kim, Dong Hwi;Sonn, Yeon Kyu;Yun, Jin Ha;Moon, Huhn Pal;Cho, Soo Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.795-806
    • /
    • 2016
  • This study was conducted to improve the continuous techniques for international competitiveness of ginseng industry to Korea-China FTA negotiation and conclusion, and provide the basic information for ginseng industry development of Korea. It was carried out the visiting of the northeastern three provinces (Jilin, Liaoling and Heilongjang) in China for 3-year from 2014 to 2016 and observed the farmers' fields of ginseng cultivation with soil environmental status. The types of ginseng cultivation could be observed in small scales of 0.5~3.0 ha, in middle scales of 4.0~10.0 ha and in large scales of 30~700 ha with the kinds of imhasam, Chinese ginseng, Korean ginseng and western ginseng. Also ginseng was cultivated in newly reclaimed land of forest in two types of direct seeding and transplanting of ginseng seedlings. The field beds of ginseng growing were covered with vinyl films in arch design of 100~130 cm height and vinyl was painted in spraying with blue, green and yellow colours for shading. It was investigated in status of the physico-chemical properties of soils. The physical information on the field soils were silt loam, loam and sandy loam in soil textures, and some plain in low slope, some alluvial fan or local valley in forest of land topography. Soil pH ranged within 5.0~5.2, soil EC was $0.93{\sim}3.78dS\;m^{-1}$, organic matter was $37{\sim}35g\;kg^{-1}$, nitrate nitrogen $63{\sim}490mg\;kg^{-1}$, available $P_2O_5$ $55{\sim}163mg\;kg^{-1}$, and in exchangeable cations, K was 0.30~0.98, Ca was 6.5~14.0, Mg was $1.1{\sim}5.3cmol_c\;kg^{-1}$ in ranges. Farmers used the fertilizer for ginseng cultivation in 10~11 t of compost, $200{\sim}400kg\;ha^{-1}$ of complex fertilizer and $750kg\;ha^{-1}$ of oil cakes. The northeastern three provinces of China can use the newly lands with large areas of ginseng cultivation in soil sickness by continuous cropping. and the soil basic fertility is batter than that of Korean in standard guide of ginseng cultivation soil.

The Physical Region of China Divided by the Characteristics of Drainage Patterns. (하계망패턴의 특색으로 구분한 중국의 자연지역)

  • Hwang, Sang-Ill
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.151-164
    • /
    • 1996
  • The regional division by the characteristics of the drainage patterns is important to understand its physical environment comprehensively, because the drainage network develops in reflecting characteristics of geological, geographical and climatical features in the drainage basin keenly. This study is the attempt to divide physical region in China whose drainage pattern is diverse. Chinese drainage basin is mainly divided into the interior drainage basin and the peripheral drainage basin. The interior drainage basin is divided into (1)the deranged pattern and (2)the centripetal pattern. The peripheral drainage basin is divided into (1)the dendritic pattern, (2)the parallel pattern, (3)the radial pattern and (4)the anastomatic pattern. Drainage patterns of the interior drainage basin are formed by affecting geographical features and climatic conditions mainly. In the peripheral drainage basin, drainage patterns are formed by other factors: the parallel pattern is connected with geological structure lineament by tectonic movement, the radial pattern with changes of the river channel resulted from the Yellow River's overflow, the anastomotic pattern with human's activities. The distributional features of the physical region in China are as follows: The deranged pattern appears in Zangbai Plateau, the centripetal pattern does in arid basin of the northwest China. the parallel pattern does in Hengduan mountains affected strongly by tectonic movement between Yangtze paraplatform and Indian Plate, does in the upper stream of Yangtze River and Ganges River in the south of Qinghai-Xizang Plateau, the radial pattern in Huaihe Haihe River drainage basin appearing in the alluvial fan region of Yellow River's downstream and the anastomotic pattern does in the delta of Yangtze River, in the northern coastal plain of the Jiangsu-Province and in the delta of Zhujiang River. Except these areas in the peripheral drainage basin, the dendritic pattern is usually found in the other areas.

  • PDF

A Guideline to Land Suitability Used Soil Physical Characteristics and Yield potential in Panax Ginseng C.A. Mayer (인삼 수량과 토양의 물리적 특성을 이용한 재배적지 기준 설정)

  • Hyun, Dong-Yun;Hyeon, Geun-Soo;Yeon, Byeong-Yeol;Kang, Seung-Weon;Kim, Young-Cheol;Lee, Kwang-Won;Kim, Seong-Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.421-426
    • /
    • 2009
  • The purpose of this study was to identify soil physical characteristics as guideline for high yield potential in ginseng cultivated field which produced 6 years root. Harvest yields of ginseng to be divided by parent rock was in order of phyllite and red shale 3.1 kg/$3.3\;m^2$ > granite and gneiss schist 3.0 kg > basalt 2.6 kg > porphyry 2.2 kg in upland and forest soil. Also, with classified by topography, it was in order of foot slope and alluvial fan 3.2 kg/$3.3\;m^2$ > valley 3.0 kg > low hill 2.9 kg > hill, lave flow and dilluvial terrace 2.8 kg in survey tilth. Class determination of soil texture, it was in order of sandy loam 3.1 kg/$3.3\;m^2$ > loam and silt loam 3.0 kg > clay loam 2.9 kg > silt clay loam 2.8 kg in survey tilth. Slope condition of farming land, in case of sloping (2~7%), it was 3.1 kg/$3.3\;m^2$ but deep sloping (15~30%) caused decreasing harvest yield. In drainage classes (excessively, well and moderately well), there was no significantly different in harvest yields. Relationship between harvest yield and soil series, Production sites as yielding 3.0 kg/$3.3\;m^2$ were seven sites, also it was contained 14 soil series. Production sites as yielding 2.5~3.0 kg/$3.3\;m^2$ were eleven sites, it was contained 16 soil series. Production sites as yielding 2.0~2.5 kg/$3.3\;m^2$ were 10 sites, it was contained 4 soil series.

A Pollen Analysis on the Environmental Changes during the Later Half of the Postglacial Age around the Basin of Onyang River, Asan (화분분석을 이용한 아산시 온양천 유역의 후빙기 후기 환경변화)

  • PARK, Ji-Hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.39-48
    • /
    • 2010
  • This is a case study to research the environmental changes that occurred during the Latter Half of the postglacial age around the Basin of Onyang River in Asan, Korea. In line with this purpose, the author performed a pollen analysis and a radiocarbon dating on the deposits of alluvial fan around the upper Geumgok River, a tributary of Onyang River. Sampling point was at the altitude of about 67.5 meters, which belongs to the central zone of the cool temperate forest. The followings are the results of the study. The study area has passed through SC-I (the coniferous forest period in which Pinus was dominant), SC-II (the deciduous broad-leaved forest period in which Quercus and Castanea were dominant) and SC-III (the mixed conifer and deciduous broad-leaved forest period, in which Pinus, Quercus and Ulmus/Zelkova were dominant) respectively since about 3,000 yrB.P. SC-I period and SC-II period are presumed to be between about 3,000 and 2,000 yrB. P., and SC-III period to begin after 2,000 yrB.P. In comparison with the nationwide pollen zone during the postglacial age, SC-I and SC-II periods are contrasted with the R-IIIa zone and also the SC-III zone with the RIIIb zone. In addition, it is assumed that Pinus densiflora forest luxuriated there since 2,000 yrB.P. due to the destruction of forests, and that a lot of Fagopyrum pollen appeared; altogether, it was the so-called human interference period, from which forests began to be markedly destroyed. It is concluded that in those days inhabitants leaded agricultural life.

Studies on the Desertification Combating and Sand Industry Development(III) - Revegetation and Soil Conservation Technology in Desertification-affected Sandy Land - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(III) - 중국(中國)의 황막사지(荒漠沙地) 녹화기술분석(綠化技術分析) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Choi, Hyung-Tae;Lee, Sang-Ho;Park, Joo-Won;Wang, Lixian;Zhang, Kebin;Sun, Baoping
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.90-104
    • /
    • 2001
  • This study is aimed to analyze and to evaluate the revegetation and soil conservation technology in desertification-affected sandy land, resulting from the project of "Studies on the desertification combating and sand industry development". Main native plants for combating desertification : The general characteristics of vegetation distribution in desertified regions are partially concentrated vegetation distribution types including the a) desert plants in low zone of desert or sanddune of depressed basin, b) salt-resistant plants around saline lakes, c) grouped vegetation with Poplar and Chinese Tamarix of freshwater-lakes, saline-lakes and river-banks, d) gobi vegetation of gravel desert and e) grassland and oasis-woods around the alluvial fan of rivers, etc. Generally, Tamarix ehinensis Lour., Haloxylon ammodendron Bunge., Calligonum spp., Populus euphratica Oliver., Elaeagnus angustifolia L., Ulmus pumila L., Salix spp., Hedysarum spp., Caragana spp., Xanthoceras sorbifolia Bunge., Nitraria tangutorum Bobr., Lespedeza bicolor, Alhagi sparsifolia Shap., Capparis spinosa L., Artemisia arenaria DC., etc. are widely distributed in desertified regions. It is necessary for conducting research in the native plants in desertified regions. Analysis of intensive revegetation technology system for combating desertification : In the wind erosion region, the experimental research projects of rational farming systems (regional planning, shelterbelts system, protection system of oasis, establishment of irrigation-channel networks and management technology of enormous farmlands, etc.), rational utilization technology of plant resources (fuelwood, medicinal plants, grazing and grassland management, etc.), utilization technology of water resources (management and planning of watershed, construction of channel and technology of water saving and irrigation, etc.), establishment of sheltetbelts, control of population increase and increased production technology of agricultural forest, fuelwood and feed, etc. are preponderantly being promoted. And in water erosion region, the experimental research projects of development of rational utilization technology of land and vegetation, engineering technology and protection technology of crops, etc. are being promoted in priority. And also, the experimental researches on the methods of utilization of water (irrigation, drainage, washing and rice cultivation, etc.), agricultural methods (reclamation of land, agronomy, fertilization, seeding, crop rotation, mixed-cultivation and soil dressing works, etc.) and biological methods (cultivation of salt-resistant crops and green manure and tree plantation, etc.) for improvement of saline soil and alkaline soil in desertified-lands are actively being promoted. And the international cooperations on the revegetation technology development projects of desertified-lands are sincerely being required.

  • PDF