• Title/Summary/Keyword: Allozyme variability

Search Result 13, Processing Time 0.016 seconds

Genetic Diversity of Soybean Landraces in Korea

  • Han, Ouk-Kyu;Abe, Jun;Shimamoto, Yoshiya
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.256-262
    • /
    • 1999
  • To evaluate the genetic diversity and structure of the South Korean soybean population, 233 landraces collected in various regions of the country were surveyed for 15 allozyme loci and one protein locus. The South Korean population was fixed or nearly fixed at seven of the 16 loci tested. The number of alleles per locus was 2.06 and Nei’s gene diversity was 0.194. These values were lower than the values for the same 16 loci previously reported for the Japanese and Chinese populations. The differences among eight regional groups were not so marked, with only 7.2% of the total variation arising from regional differentiation. Three southern regional groups (Chollabuk-do, Chollanam-do and Kyong-sangnam-do) exhibited a relatively high variability because of frequent occurrence of alleles characteristic of the Japanese population. A marked difference was found in allelic frequencies at the Dial locus between large-seeded landraces and small-seeded ones, suggesting that the latter, which are used mainly for bean sprouts, had been established independently of the former, which are used mostly for soy sauce and cooking with rice. Not only the region but also the usage as food materials should therefore be taken into consideration in designing an efficient collection and preservation method for the Korean soybean landraces.

  • PDF

Isozyme Variability in Two Species of Freshwater Viviparid Snails in Korea : Cipangopaludina chinensis malleata and C. Japonica (한국산 논우렁이과 ( Family Viviparidae ) 2종에서의 동위효소 변이)

  • 정평림;정영헌;박준우;정기헌
    • The Korean Journal of Malacology
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1998
  • A horizontal starch gel electrophoresis for enzyme proteins extracted from 2 species of Korean viviparid snails; Cipangopaludina chinensis malleata and C. japonica was carried out in order to elucidate their genetic relationships. A total of 10 enzymes were employed in three different kinds of buffer systems. Two loci from each enzyme of alcohol dehydrogenase, esterase, glucose phosphate isomerase, isocitrate dehydrogenase, iditol dehydrogenase, malate dehydrogenase and peptidase(VL); and only one locus dach from two enzymes, glycerlo-3-phosphate dehydrogenase and phosphoglucomutase were detected; but, four loci from peptidase(LGG) were observed. Most of loci in two viviparid species showed homozygous monomorphic banding patterns and some of them were specific as genetic markers between two different species. However, EST-1, MDH-1, PEP(VL)-1loci showed polymorphic banding patterns. Foru populations of C. chinensis malleata were more closely clustered in a dendrogram within the range of genetic identity values of 0.928-1.00, and these clusters were lineated with C. japonica at the value of 0.355. In summarizing the above results, two viviparid snail species dmployed in this study mostly showed monomorphic enzyme protein banding patterns, and genetic differences specific between two species.

  • PDF

Population genetic structure of Sedum polytrichoides (Crassulaceae): Insights into barriers to gene flow (바위채송화(돌나물과)집단의 유전적 구조: 유전자 이동과 물리적 장벽에 관한 통찰)

  • Chung, Mi Yoon;Lopez-Pujol, Jordi;Chung, Myong Gi
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.4
    • /
    • pp.361-370
    • /
    • 2016
  • An area comprising Juwangsan National Park and its adjacent mountains (southeastern Korean Peninsula) is a good model system for testing the effects of physical barriers to gene flows in plant populations. We predicted that plant species consisting of isolated populations are genetically more differentiated than those that are rather continuously distributed. Most populations of Sedum polytrichoides occur in four isolated valleys, and we assessed the genetic variability and structures using twelve allozyme loci in ten populations. We also compared the present results to earlier findings pertaining to the two co-occurring herbs Hylotelephium ussuriense (${\equiv}$ Sedum ussuriense) (growing only in the four isolated valleys) and S. kamtschaticum (rather continuously distributed). We found moderate levels of within-population genetic variation in S. polytrichoides ($H_{e}=0.112$). Estimates of among-population divergence in S. polytrichoides were also moderate ($F_{ST}=0.250$) and, as expected, very similar to that of H. ussuriense (0.261) but considerably higher than the variation in S. kamtschaticum (0.165). An analysis of molecular variance (AMOVA) revealed that S. polytrichoides and H. ussuriense had higher percentages of among-valley variation (19% each) than S. kamtschaticum (4%). Most of this variation, as also indicated by the STRUCTURE program, was due to differences in genetic profiles between the two central valleys. We concluded that the genetic differences observed between species (S. kamtschaticum vs. S. polytrichoides and H. ussuriense) are mainly due to differences in their distribution within the study area.