Browse > Article
http://dx.doi.org/10.11110/kjpt.2016.46.4.361

Population genetic structure of Sedum polytrichoides (Crassulaceae): Insights into barriers to gene flow  

Chung, Mi Yoon (Division of Life Science and the Research Institute of Natural Science, Gyeongsang National University)
Lopez-Pujol, Jordi (BioC-GReB, Botanic Institute of Barcelona (IBB-CSIC-ICUB))
Chung, Myong Gi (Division of Life Science and the Research Institute of Natural Science, Gyeongsang National University)
Publication Information
Korean Journal of Plant Taxonomy / v.46, no.4, 2016 , pp. 361-370 More about this Journal
Abstract
An area comprising Juwangsan National Park and its adjacent mountains (southeastern Korean Peninsula) is a good model system for testing the effects of physical barriers to gene flows in plant populations. We predicted that plant species consisting of isolated populations are genetically more differentiated than those that are rather continuously distributed. Most populations of Sedum polytrichoides occur in four isolated valleys, and we assessed the genetic variability and structures using twelve allozyme loci in ten populations. We also compared the present results to earlier findings pertaining to the two co-occurring herbs Hylotelephium ussuriense (${\equiv}$ Sedum ussuriense) (growing only in the four isolated valleys) and S. kamtschaticum (rather continuously distributed). We found moderate levels of within-population genetic variation in S. polytrichoides ($H_{e}=0.112$). Estimates of among-population divergence in S. polytrichoides were also moderate ($F_{ST}=0.250$) and, as expected, very similar to that of H. ussuriense (0.261) but considerably higher than the variation in S. kamtschaticum (0.165). An analysis of molecular variance (AMOVA) revealed that S. polytrichoides and H. ussuriense had higher percentages of among-valley variation (19% each) than S. kamtschaticum (4%). Most of this variation, as also indicated by the STRUCTURE program, was due to differences in genetic profiles between the two central valleys. We concluded that the genetic differences observed between species (S. kamtschaticum vs. S. polytrichoides and H. ussuriense) are mainly due to differences in their distribution within the study area.
Keywords
gene flow; genetic differentiation; genetic diversity; physical barrier; Sedum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Karron, J. D. 1991. Patterns of genetic variation and breeding systems in rare plant species. In Genetics and Conservation of Rare Plants. Falk, D. A. and K. E. Holsinger (eds.), Oxford University Press, New York. Pp. 87-98.
2 Ku, Y.-B., H. K. Oh, Y. J. Chun and K.-H. Cho. 2011. High genetic differentiation in endangered Sedum ussuriense and implications for its conservation in Korea. Journal of Plant Biology 54: 262-268.   DOI
3 Landguth, E. L., S. A. Cushman, M. K. Schwartz, K. S. McKelvey, M. Murphy and G. Luikart. 2010. Quantifying the lag time to detect barriers in landscape genetics. Molecular Ecology 19: 4179-4191.   DOI
4 Le Corre, V., S. Dumolin-Lapegue and A. Kremer. 1997. Genetic variation at allozyme and RAPD loci in sessile oak Quercus petraea (Matt.) Liebl.: the role of history and geography. Molecular Ecology 6: 519-529.   DOI
5 Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209-220.
6 Mitton, J. B., Y. B. Linhart, K. B. Sturgeon and J. L. Hamrick. 1979. Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. Journal of Heredity 70: 86-89.   DOI
7 Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.
8 Nei, M., T. Maruyama and R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1-10.   DOI
9 Ohwi, J. 1965. Flora of Japan. Smithsonian Institute, Washington, D.C, 1066 pp.
10 Peakall, R. and P. E. Smouse. 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295.   DOI
11 Chung, M. Y., J. Lopez-Pujol and M. G. Chung. 2017. The role of the Baekdudaegan (Korean Peninsula) as a major glacial refugium for plant species: A priority for conservation. Biological Conservation. http://dx.doi.org/10.1016/j.biocon.2016.11.040.   DOI
12 Chung, M. Y., M. G. Chung, J. Lopez-Pujol, M.-X. Ren, Z.-Y. Zhang and S. J. Park. 2014a. Were the main mountain ranges in the Korean Peninsula a glacial refugium for plants? Insights from the congeneric pair Lilium cernuum - Lilium amabile. Biochemical Systematics and Ecology 53: 36-45.   DOI
13 Chung, M. Y., J. Lopez-Pujol and M. G. Chung. 2014b. Comparative genetic structure between Sedum ussuriense and S. kamtschaticum (Crassulaceae), two stonecrops co-occurring on rocky cliffs. American Journal of Botany 101: 946-956.   DOI
14 Piry, S., G. Luikart and J.-M. Cornuet. 1999. Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity 90: 502-503.   DOI
15 Pritchard, J. K., X. Wen and D. Falush. 2010. Documentation for Structure Software: Version 2.3. Department of Human Genetics, University of Chicago, Chicago. Retrieved Nov. 18, 2013, from http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.4/structure_doc.pdf.
16 Priya, S. 2007. Demography and native bee pollination of Sedum laxum (Crassulaceae), an endemic, clonal plant in a managed forest matrix landscape of the Siskiyou Mountains. Ph.D. dissertation, University of California, Santa Cruz, CA, 207 pp.
17 Chung, M. Y., J. D. Nason, J. Lopez-Pujol, T. Yamashiro, B.-Y. Yang, Y.-B. Luo and M. G. Chung. 2014c. Genetic consequences of fragmentation on populations of the terrestrial orchid Cymbidium goeringii. Biological Conservation 170: 222-231.   DOI
18 Chung, M. Y., J. Lopez-Pujol, Y. M. Lee, S. H. Oh and M. G. Chung. 2015. Clonal and genetic structure of Iris odaesanensis and Iris rossii (Iridaceae): insights of the Baekdudaegan Mountains as a glacial refugium for boreal and temperate plants. Plant Systematics and Evolution 301: 1397-1409.   DOI
19 Clayton, J. W. and D. N. Tretiak. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. Journal of the Fisheries Research Board of Canada 29: 1169-1172.   DOI
20 Cornuet, J. M. and G. Luikart. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014.
21 Earl, D. A. and B. M. VonHoldt. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359-361.   DOI
22 Smith, J. M. 1999. Evolutionary Genetics. Oxford University Press, Oxford, 348 pp.
23 Rousset, F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219-1228.
24 Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53-65.   DOI
25 Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787-792.   DOI
26 Soltis, D. E., C. H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. American Fern Journal 73: 9-27.   DOI
27 Su, H., L.-J. Qu, K. He, Z. Zhang, J. Wang, Z. Chen and H. Gu. 2003. The Great Wall of China: a physical barrier to gene flow? Heredity 90: 212-219.   DOI
28 Thiede, J. and U. Eggli. 2007. Crassulaceae. In The Families and Genera of Vascular Plants, Vol. 9. Kubitzki, K. (ed.), Springer, Berlin. Pp. 83-118.
29 Fu, K. and H. Ohba. 2001. Crassulaceae. In Flora of China, Vol. 8. Brassicaceae through Saxifragaceae. Wu, Z.-Y. and P. H. Raven (eds.), Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, MO. Pp. 202-268.
30 Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620.   DOI
31 Godt, M. J. W. and J. L. Hamrick. 2001. Genetic diversity in rare southeastern plants. Natural Areas Journal 21: 61-70.
32 Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86: 485-486.   DOI
33 Hamilton, J. A. and C. G. Eckert. 2007. Population genetic consequences of geographic disjunction: a prairie plant isolated on Great Lakes alvars. Molecular Ecology 16: 1649-1660.   DOI
34 Hamrick, J. L. and M. J. W. Godt. 1990. Allozyme diversity in plant species. In Plant Population Genetics, Breeding and Genetic Resources. Brown, A. H. D., M. T. Clegg, A. L. Kahler and B. S Weir (eds.), Sinauer Associates, Sunderland, MA. Pp. 43-63.
35 Hardy, O. J. and X. Vekemans. 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618-620.   DOI
36 Haufler, C. H. 1985. Enzyme variability and modes of evolution in Bommeria (Pteridaceae). Systematic Botany 10: 92-104.   DOI
37 Hwang, S. K., B. J. Lee and A. J. Reedman. 2007. Flow lineations and emplacement processes of the Juwangsan tuff, eastern Cheongsong, Korea. Journal of the Geological Society of Korea 43: 463-476. (in Korean)
38 Karron, J. D. 1987. A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. Evolutionary Ecology 1: 47-58.   DOI
39 Wright, S. 1965. The interpretation of population structure by Fstatistics with special regard to systems of mating. Evolution 19: 395-420.   DOI
40 Weir, B. S. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.   DOI
41 Wyatt, R. 1983. Reproductive biology of the granite outcrop endemic Sedum pusillum (Crassulaceae). Systematic Botany 8: 24-28.   DOI
42 Yamada, T. and M. Maki. 2012. Impact of geographical isolation on genetic differentiation in insular and mainland populations of Weigela coraeensis (Caprifoliaceae) on Honshu and the Izu Islands. Journal of Biogeography 39: 901-917.   DOI
43 Yeh, F. C., R. C. Yang and T. B. J. Boyle. 1999. POPGENE version 1.31-Microsoft Windows-based freeware for population genetic analysis. Quick Users' Guide. University of Alberta, Edmonton.
44 Zhang, Z.-Y., X.-M. Zheng and S. Ge. 2007. Population genetic structure of Vitex negundo (Verbenaceae) in Three-Gorge Area of the Yangtze River: the riverine barrier to seed dispersal in plants. Biochemical Systematics and Ecology 35: 506-516.   DOI
45 Cheliak, W. M. and J. P. Pitel. 1984. Technique for starch gel electrophoresis of enzyme from forest tree species. Information report PI-X-42. Petawawa National Forestry Institute, Chalk River, Ontario, 49 pp.
46 Barrett, S. C. H. and J. R. Kohn. 1991. Genetic and evolutionary consequences of small population size in plants: implications for conservation. In Genetics and Conservation of Rare Plants. Falk, D. A. and K. E. Holsinger (eds.), Oxford University Press, New York. Pp. 3-30.
47 Chang, C.-S., H. Kim and T.-Y. Park. 2003. Patterns of allozyme diversity in several selected rare species in Korea and implications for conservation. Biodiversity and Conservation 12: 529-544.   DOI
48 Charlesworth, B., D. Charlesworth and N. H. Barton. 2003. The effects of genetic and geographic structure on neutral variation. Annual Review of Ecology, Evolution, and Systematics 34: 99-125.   DOI