• Title/Summary/Keyword: Alloying design

Search Result 55, Processing Time 0.023 seconds

A Study on the Complementary Alloying Design of Wear Resistant CV Graphite Cast Irons (내마모 CV흑연주철의 합금설계)

  • Park, Heung-Il;Kim, Woo-Yeol;Bae, Cha-Hurn;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.333-341
    • /
    • 1993
  • The effects of alloying elements on the structure and mechanical properties of compacted/vermicular graphite cast irons containing copper, tin and molubdenum for producing pearlite matrix, and also containing phosphorus and boron for increasing wear resistance, were investigated. The Brinell hardness and ultimate tensile strength of the specimens with the range of compositions, [1.5% Cu-0.05% Sn-(0.2-0.4)% Mo-(0.2-0.6)% P-(0.035-0.070)% B], was found to fall within in the following range, depending on their composition; Brinell hardness of BHN 250-315, ultimate tensile strength of $28.1-40.3kg/mm^2$. It was also found within this experiment that CV graphite cast irons possessing higher amount of phosphide eutectic exhibit better wear resistance, but the wear resistance became deteriorate when the area fraction of phosphide eutectics exceed more than 10%. From these experimental results, it could be concluded that the CV graphite cast iron containing 1.5% Cu, 0.05% Sn, 0.4% Mo, 0.2% P and 0.035% B showed good mechanical and wear resistance properties.

  • PDF

The Effect of Thermo-Mechanical Treatment on Mechanical and Electrical Behavior of Cu Alloys (동합금의 가공열처리법에 의한 기계적·전기적 성질)

  • Kim, Hyung-Seok;Jeon, C.H.;Song, Gun;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.20-29
    • /
    • 1997
  • Pure copper is widely used for base material for electrical and electronic parts because of its good electrical conductivity. However, it has such a low strength that various alloying elements are added to copper to increase its strength. Nevertheless, alloying elements which exist as solid solution elements in copper matrix severely reduce the electrical conductivity. The reduction of electrical conductivity can be minimized and the strengthening can be maximized by TMT(Thermo-Mechanical Treatment) in copper alloys. In this research, the effects of TMT on mechanical and electrical properties of Cu-Ni-Al-Si-P, Cu-Ni-Al-Si-P-Zr and Cu-Ni-Si-P-Ti alloys aged at various temperatures were investigated. The Cu alloy with Ti showed the hardness of Hv 225, electrical conductivity of 59.8%IACS, tensile strength of 572MPa and elongation of 6.4%.

  • PDF

Mechanical Characteristics of Mechanically Alloyed Al-Fe Alloys accroding to Annealing Process (기계적으로 합금화된 Al-Fe합금의 풀림처리에 따른 기계적 특성)

  • Seo, H.S.;Chung, S.C.;Koo, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.222-228
    • /
    • 1995
  • Mechanical alloying behaviour was investigated after adding 6, 8, 12wt% Fe powder into A1 matrix, respectively, in order to develop Al alloy. And the mechanical characteristics of the alloy which was produced by the above method were studied. The hardness and ultimata tensile strength of the material with different compositions were found to be increased with annealing temperatures and holding times. Intermetallic compound of $Al_3Fe$ and carbide of $Al_4C_3$ phases, which were generated from the different compositions during annealing, were found. It was suggested that enhancement of mechanical properties of Al-Fe alloy system was due to the presence of these preapitates that constrained grain growth and blocked dislocation movement in the alloy system.

  • PDF

Effects of Risering Design and Chemical Composition on Formation of Shrinkage Cavity in Gray Cast Iron (회주철의 수축결함생성에 미치는 주조방안 및 화학조성의 영향)

  • Yu, Sung-Kon
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.297-302
    • /
    • 2003
  • The effects of risering design and alloying element on the formation of defects such as external depression, primary and secondary shrinkage cavity in gray cast iron were investigated. Two types of risering design for the cylindrically step-wise specimen, No. 1(progressive solidification) and No. 2(directional solidification) risering designs, were prepared and five different alloy compositions were casted. In the No. 1 risering design, external depression or primary shrinkage cavity due to liquid contraction was observed in all the specimens from ISO 150 to ISO 350. The primary shrinkage cavity was located right under the top surface or connected to the top surface, and was characterized by smooth surface. Its size increased with an increase in ISO number. However, neither secondary shrinkage cavity nor swollen surface was observed in all the castings. In the No.2 risering design, neither primary shrinkage cavity nor secondary shrinkage cavity was observed in all the specimens due to proper risering design. A swollen surface was also not observed in all the castings with the application of pep-set mold.

Development of Ti-based Bulk Metallic Glasses with Non-toxic Elements (인체에 유해하지 않은 원소를 사용한 Ti 계 벌크 비정질 합금 개발)

  • Lee, Chul-Kyu;Yi, Seong-Hoon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.4
    • /
    • pp.177-180
    • /
    • 2012
  • Ti-based bulk metallic glasses with high glass forming ability were developed through a systematic alloy design technique. The main alloy design strategy was the selection of alloying elements that may not be toxic in the human body. The $Ti_{45.0}Cu_{40.1}Zr_{12.7}Si_{2.2}$ alloy could be cast into an amorphous rod with the diameter of 3 mm by a suction casting technique using Cu mold. The compressive strength of the amorphous rod was measured as 1826 MPa. Since the Ti-based amorphous alloys consist of non-toxic elements, they can be widely used as bio-materials and eco-materials with unique and beneficial properties.

Die design for HIP'ing of Nickel-base Superalloys (초내열합금 HIP 성형을 위한 금형설계)

  • Lim J.S.;Yeom J.T.;Hou Bongliang;Park N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.139-142
    • /
    • 2004
  • Nickel base superalloys are widely used for high temperature applications due to heat resisting capability and corrosion resistance at high temperatures. Superalloys with many strengthening alloying elements are frequently used in powder form to alleviate harmful effects of alloy segregation. HIP (hot isostatic pressing) and DB (diffusion bonding) as a form of solid-state bonding process is used to make turbine components, such as integrated turbine rotors. HIP/DB process requires many technical overcomes related to dimensional changes as well as microstructural control. In this research, HIP/DB process for nickel base superalloys, Udimet 720 and MM 247, were investigated with a view to control the dimensional change during the consolidation process. Simple disc-shaped cans were used to select the conceptual die design for the control of the dimensional change especially in radial direction. The change in the shape of consolidated shape was investigated using commercial FE code with constitutive equations fur low temperature plasticity deformation.

  • PDF

Can design for Blisk of Nickel-base Superalloy Powder (분말합금을 이용한 블리스크 제조용 캔 설계)

  • Lim J. S.;Yeom J. T.;Kwon Y. S.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.171-174
    • /
    • 2004
  • Superalloys with many strengthening alloying elements are frequently used in powder form to alleviate harmful effects of alloy segregation. HIP (hot isostatic pressing) and DB (diffusion bonding) as a form of solid-state bonding process is often used to make turbine components, such as integrated turbine rotors. HIP/DB process requires many technical overcomes related to dimensional changes as well as microstructural control. In this research, HIP/DB process for nickel base superalloys, Udimet 720, were investigated with a view to control the dimensional change during the consolidation process. Simple disc-shaped cans were used to select the conceptual die design for the control of the dimensional change especially in radial direction. The change in the shape of consolidated shape was investigated using commercial FE code with constitutive equations for low temperature plasticity and creep deformation.

  • PDF

Influence of Selective Oxidation Phenomena in CGLs on Galvanized Coating Defects Formation

  • Gong, Y.F.;Birosca, S.;Kim, Han S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steel. The formation and morphology of the oxides of alloying elements in High Strength Interstitial Free (HS-IF), Dual Phase (DP) and Transformation-Induced Plasticity (TRIP) steels are strongly influenced by the furnace dew point, and the presence of specific oxide may result in surface defects and bare areas on galvanized sheet products. The present contribution reviews the progress made recently in understanding the selective formation of surface and subsurface oxides during annealing in hot dip galvanizing and conventional continuous annealing lines. It is believed that the surface and sub-surface composition and microstructure have a pronounced influence on galvanized sheet product surface quality. In the present study, it is shown that the understanding of the relevant phenomena requires a combination of precise laboratory-scale simulations of the relevant technological processes and the use of advanced surface analytical tools.

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

Design of Nickel Alloys Using the Theoretical Values Calculated from the Electronic State Energies (에너지 전자상태 계산으로 도출된 이론값을 이용한 니켈 합금 설계)

  • Baek, Min-Sook;Kang, Pub-Sung;Baek, Kyeong-Cheol;Kim, Byung-Il;Yoon, Dong-Joo
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.642-646
    • /
    • 2015
  • Super alloys, which can be divided into three categories, i.e. Ni-base, Co-base, and Fe-base alloys, are widely used for high temperature applications. Since superalloys contain many alloying elements and precipitates, their chemistry and processing parameters need to be carefully designed. In this study, we designed a new Ni alloy to prevent corrosion due to water vapor and gases at high temperatures. The new alloy was designed using the theoretical value of the resulting energy electronic state calculation($DV-X{\alpha}$ method). The components that were finally used were Cr, Mo, and Ti, with Ni as a base. For these alloys, elements were selected in order to compare their values with that of the average theoretical basis for an Inconel 625 alloy. Finally, two kinds of Ni alloy were designed: Ni-28Cr-4Mo-2Ti and Ni-20Cr-10Mo-1Ti.