• 제목/요약/키워드: Alloying

검색결과 1,191건 처리시간 0.03초

Thermal Stability of Amorphous Ti-Cu-Ni-Sn Prepared by Mechanical Alloying

  • Oanha, N.T.H.;Choi, P.P.;Kim, J.S.;Kim, J.C.;Kwone, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.953-954
    • /
    • 2006
  • Ti-Cu-Ni-Sn quaternary amorphous alloys of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$ composition were prepared by mechanical alloying in a planetary high-energy ball-mill (AGO-2). The amorphization of all three alloys was found to set in after milling at 300rpm speed for 2h. A complete amorphization was observed for $Ti_{50}Cu_{32}Ni_{15}Sn_3$ and $Ti_{50}Cu_{25}Ni_{20}Sn_5$ after 30h and 20h of milling, respectively. Differential scanning calorimetry analyses revealed that the thermal stability increased in the order of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$.

  • PDF

Fabrication of TiAl Target by Mechanical Alloying and Applications in Physical Vapour Deposition Coating

  • Gabbitas, Brian;Cao, Peng;Raynova, Stiliana;Zhang, Deliang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.729-730
    • /
    • 2006
  • The research involves the development of a powder metallurgical route for producing good quality TiAl targets for making physical vapour deposition (PVD) coatings. Mixtures of elemental titanium and aluminium powders were mechanically milled using a novel discus milling technique under various conditions. Hot isotropic pressing (HIP) was then employed for consolidation of the mechanically alloyed powders. A cathodic arc vapour deposition process was applied to produce a TiAlN coating. Microstructural examination was conducted on the target material and PVD coatings, using X-ray diffractometry (XRD), X-ray photoelectron spectrometry (XPS) and scanning electron microscopy (SEM). It has been found that combining mechanical alloying and HIP enable us to produce fairly good quality of TiAl based target. The PVD coatings obtained from the TiAl target showed very high microhardness values.

  • PDF

Thermal Stability of Al-Fe-X Alloy System Prepared by Mechanical Alloying and Spark Plasma Sintering: II. Al-Fe-Cr and Al-Fe-Mo (기계적 합금화 및 스파크 플라즈마 소결에 의해 제조된 Al-Fe-X계 합금의 열적 안정성: II. Al-Fe-Cr and Al-Fe-Mo)

  • Lee, Hyun-Kwuon;Lee, Sang-Woo;Cho, Kyeong-Sik
    • Journal of Powder Materials
    • /
    • 제12권1호
    • /
    • pp.43-50
    • /
    • 2005
  • Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to Al-Fe-Cr and Al-Fe-Mo powder mixture to investigate effects of Cr and Mo addition on thermal stability of Al-Fe, and thereby to enhance its thermal stability up to $500^{\circC}$. Various analytical techniques including micro-Vickers hardness test, SEM, TEM, X-ray diffractometry and corrosion test were carried out. It was found that addition of Cr and Mo to Al-Fe system played a role of grain growth inhibitor of matrix Al and some precipitates such as $Al_3Fe$ during SPS and subsequent heat treatment. The inhibition of grain growth resulted in increased Vickers hardness and thermal stability up to $500^{\circC}$ comparing to those of Al-Fe alloy system.

The Effect of the Additive Elements Alloying Method on the Corrosion Resistance of Sintered STS 316L (STS 316L 소결재료의 내식특성에 미치는 합금원소 첨가방법의 영향)

  • Kim, Hye Seong;Kim, Yoo Young;Park, Dong Kyu;Ahn, In Shup
    • Journal of Powder Materials
    • /
    • 제20권3호
    • /
    • pp.203-209
    • /
    • 2013
  • In this study, STS 316L powders with 3 wt.% Cu and 1 wt.% Sn known as corrosion-resistance reinforcement elements, are prepared to make different kinds of specimens, in which, 3 wt.% Cu and 1 wt.% Sn are added in different forms by mixing, alloying and fully alloying. After sintering in the same condition, the corrosion resistance, wear resistance and their mechanical properties of specimens are tested respectively. According to the comparison, STS 316L specimen sintered at $1270^{\circ}C$ showed the most excellent mechanical property: HRB 78 (hardness), 1130.7 MPa (RCS), 26.6% (Fraction Wear), It was similar with the specimen made of STS316L and fully alloyed Cu and Sn powders, meanwhile, the latter one appears the best corrosion resistance, 75hrs-salt immersion test results. In addition, the specimens with Cu and Sn powders additive showed relatively worse wear resistance in compared with STS316L specimen.

Effects of Alloying Elements on the Surface Characteristics of Pb-Substrate for Battery (Pb-기판의 표면특성에 미치는 합금원소의 영향)

  • Oh, S.W.;Choe, H.C.
    • Journal of Surface Science and Engineering
    • /
    • 제39권6호
    • /
    • pp.302-311
    • /
    • 2006
  • Nowadays the open-type lead-acid battery for vehicle use is being replaced with the sealed-type because it needs no maintenance and has a longer cycle life. Thus researches on this battery are being conducted very actively by many advanced battery companies. There is, however, a serious problem with the maintenance free(MF) battery that its cathode electrode has a limited cycle life due to a corrosion of grid. In this study, it was aimed to improve a corrosion resistance of the cathode grid which is commonly made of Pb-Ca alloy for a mechanical strength. For this purpose, various amounts of alloying elements such as Sn, Ag and Ba were added singly or together to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test and their corrosion layers appeared at the interface between the grids and the active materials were carefully observed in order to clarify effects of alloying elements.

Effects of Alloying Elements on the Corrosion Layer Formation of Pb-Grid/Active Materials Interface (Pb 기판/활물질 계면의 부식층형성에 미치는 합금원소영향)

  • Oh, Se-Woong;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • 제40권5호
    • /
    • pp.225-233
    • /
    • 2007
  • Effects of alloying elements on the corrosion layer formation of Pb-grid/active materials interface has been researched for improvement of corrosion resistance of Pb-Ca alloy. For this research, various amounts of alloying elements such as Sn, Ag and Ba were added to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test. Overcharge life cycle test was carried out at $75^{\circ}C$, 4.5 A, for 110 hrs. with KS standard (KSC 8504). And then, after keeping the battery with open circuit state for 48 hr, discharge was carried out at 300A for 30 sec. Corrosion morphology and interface between Pb-grid and active materials were investigated by using ICP, SEM, WDX, and LPM. Corrosion layer of Pb-Ca alloy got thicken with increasing Ca content. For Pb-Ca-Sn alloy, thickness of corrosion layer decreased as Sn and Ag content increased gradually. In case of Pb-Ca-Sn-Ba alloy, thickness of corrosion layer decreased up to 0.02 wt% Ba addition, whereas, it was not changed in case of above 0.02 wt% Ba addition.

Fabrication of Nanostructured Fe-Co powders by Mechanical Alloying and Their Magnetic Properties (기계적 합금화에 의한 나노구조 Fe-Co 합금분말의 제조 및 자성특성)

  • 정진영
    • Journal of Powder Materials
    • /
    • 제6권1호
    • /
    • pp.27-35
    • /
    • 1999
  • A study was made on the fabrication of nanostructured Fe-Co powders by mechanical alloying and their magnetic properties. Microstrural development during the process of MA was inverstigated by means of X-ray diffraction, differential thermal analyzer, scanning electron microscopy and transmission electron microscopy. The magnetic properties of NS Fe-Co powders were evaluated through the measurements of the saturation magnetization $(M_s)$ as well as the coercivity $(H_c)$. The average grain size calculated from line braodening in XRD peak was about 10nm or less and confirmed by TEM. In this experiment, two different milling methods (cycle opertion and conventional milling) were used. Cycle operation had an advantage over the conventional milling method in that more refined powders can be obtained. Solid state alloying of the components was confirmed from both the change of the saturation magnetization and the change of lattice parameter with Co contentration. Maxium $M_s$ was obtained at the composition of 30at.%Co. Relatively high coercivities of 10~150e were obtained for the compositions investigated, and this seems to be due to the high amount of internal strain introduced during milling.

Effect of Milling Medium Materials on Mechanical Alloying of Mo-25.0at%Si Powder Mixture (Mo-25.0at%Si 혼합분말의 기계적 합금화에 미치는 밀링매체 재료의 영향)

  • 박상보
    • Journal of Powder Materials
    • /
    • 제5권1호
    • /
    • pp.64-70
    • /
    • 1998
  • Milling media of steel and partially stabilized zirconia(PSZ) were used to produce $Mo_3$Si by mechanical alloying(MA) of Mo-25.0at%Si elemental powder mixture. The effect of milling medium materials on MA of the powder mixture have been investigated by XRD and DTA. The reaction rate and the end-product noticeably depended upon the milling medium material. The formation of $Mo_3$Si and $Mo_5Si_3$phases by PSZ ball-milling took place after 15 hr of MA and was characterized by a slow reaction rate as Mo, Si, $Mo_5Si_3$ and $Mo_3$Si coexisted for a long period of milling time. The formation of a new phase by steel ball-milling, however, did not take Place even after 96 hr of MA. DTA and annealing results showed that $Mo_5Si_3$ and $Mo_3$Si were formed after heating the ball-milled powder specimens to different temperatures. At low temperatures, Mo and Si were transformed into $Mo_5Si_3$. At high temperatures, the formation of $Mo_3$Si can be partially attributed to the reaction, 7Mo+Si+$Mo_5Si_3$-.4$Mo_3$Si . The formation of $Mo_3$Si and Mo5Si3 phases by mechanical alloying of the powder mixture and the relevant reaction rate appeared to depend upon the milling medium material as well as the thermodynamic properties of the end-products.

  • PDF

Effects of Alloying Element and Grain Refinement on the Tensile Properties of Mg-Alloy Casted with Sand Mold (사형 주조 마그네슘 합금의 인장 특성에 미치는 합금 원소와 결정립 미세화의 영향)

  • Han, Jae-Jun;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • 제31권4호
    • /
    • pp.212-217
    • /
    • 2011
  • The effects of alloying element and grain refinement on the tensile properties of magnesium alloy poured into sand mold were investigated. The strength of magnesium alloy was greatly increased by the addition of aluminium and that was increased with the increased aluminum content added up to 8.10 wt% and decreased beyond that. Even though the strength of Mg-8.10 wt%Al alloy was rather decreased by the addition of zinc, that was increased with increased zinc content added up to 0.50 wt% and decreased with the increased one beyond that. The maximum tensile strength was obtained with 0.50 wt%Mn added. The strength and elongation were simultaneously increased with grain refinement and the optimum amount of strontium addition for this was 0.30 wt%. The optimum chemical composition was obtained and the yield strength, tensile strength and elongation of the alloy with this composition were 90.2, 176.3MPa and 4.43%, respectively.

Characteristics of Ni/YSZ Cermet Prepared by Mechanical Alloying Method for the High Temperature Electrolysis of Steam

  • Choo, Soo-Tae;Kang, Kyoung-Hoon;Chae, Ui-Seok;Hong, Hyun-Seon;Hwang, Kab-Jin;Bae, Ki-Kwang;Shin, Seock-Jae
    • Journal of the Korean Ceramic Society
    • /
    • 제43권12호
    • /
    • pp.764-767
    • /
    • 2006
  • Ni/YSZ $(Y_2O_3-stabilized\;ZrO_2)$ composite as an electrode component for High Temperature Electrolysis (HTE) was fabricated by mechanical alloying method using Ni and YSZ powders. Characterization of the synthesized composite was investigated with various analysis tools, including XRD, SEM and PSA, and a self-supporting planar unit cell prepared with the Ni/YSZ composite was prepared to study the electrochemical reactions for the production of hydrogen. The Ni/YSZ cermet is composed of crystalline Ni and YSZ, in a sub-micro scale, and has an even distribution without aggregated particles. In addition, under an electrochemical reaction, the unit cell showed an $H_2$ evolution rate from steam of 14 Nml/min and $600mA/cm^2$ of current density at the electrode.