• Title/Summary/Keyword: Alloy steels

Search Result 309, Processing Time 0.024 seconds

Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

  • Lee, Woo Yong;Koh, Seong Ung;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.39-44
    • /
    • 2005
  • The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. However, corrosion rate was not directly related to SSC susceptibility of steels.

High Strength SA508 Gr.4N Ni-Cr-Mo Low Alloy Steels for Larger Pressure Vessels of the Advanced Nuclear Power Plant (차세대 원전 대형 압력용기용 고강도 SA508 Gr.4N Ni-Cr-Mo계 저합금강 개발)

  • Kim, Min-Chul;Park, Sang-Gyu;Lee, Ki-Hyoung;Lee, Bong-Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.100-106
    • /
    • 2014
  • There is a growing need to introduce advanced pressure vessel steels with higher strength and toughness for the optimizatiooCn of the design and construction of longer life and larger capacity nuclear power plants. SA508 Gr.4N Ni-Cr-Mo low alloy steels have superior strength and fracture toughness, compared to SA508 Gr.3 Mn-Mo-Ni low alloy steel. Therefore, the application of SA508 Gr.4N low alloy steel could be considered to satisfy the strength and toughness required in advanced nuclear power plants. The purpose of this study is to characterize the microstructure and mechanical properties of SA508 Gr.4N low alloy steels. 1 ton ingot of SA508 Gr.4N model alloy was fabricated by vacuum induction melting followed by forging, quenching, and tempering. The predominant microstructure of the SA508 Gr.4N model alloy is tempered martensite having small packet and fine Cr-rich carbides. The yield strength at room temperature was 540MPa, and it was decreased with an increase of test temperature while DSA phenomenon occurred at around $288^{\circ}C$. Overall transition property of SA508 Gr.4N model alloy was much better than SA508 Gr.3 low alloy steel. The index temperature, $T_{41J}$, of SA508 Gr.4N model alloy was $-132^{\circ}C$ in Charpy impact tests, and reference nil-ductility transition temperature, $RT_{NDT}$ of $-105^{\circ}C$ was obtained from drop weight tests. From the fracture toughness tests performed in accordance with the ASTM standard E1921 Master curve method, the reference temperature, $T_0$ was $-147^{\circ}C$, which was improved more than $60^{\circ}C$ compared to SA508 Gr.3 low alloy steels.

Effect of Tempering Temperature on Hydrogen Embrittlement of Cr-Mo Low Alloy Steels for High-pressure Gaseous Hydrogen Storage (고압수소 저장용 Cr-Mo계 저합금강의 수소취성에 미치는 템퍼링 온도의 영향)

  • M. S. Jeong;H. C. Shin;S. G. Kim;B. Hwang
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.185-192
    • /
    • 2024
  • This study examined how varying tempering temperatures affect the susceptibility of Cr-Mo low alloy steels to hydrogen embrittlement. A slow strain-rate test (SSRT) was carried out on the steels electrochemically pre-charged with hydrogen in order to examine the hydrogen embrittlement behavior. The results showed that the hydrogen embrittlement resistance of the Cr-Mo low alloy steels improved with increasing tempering temperature. Thermal desorption analysis (TDA) revealed that diffusible hydrogen content decreased with increasing tempering temperature, accompanied by a slight increase in the peak temperature. This decrease in hydrogen content was likely due to a reduction in dislocation density which served as reversible hydrogen trap sites. These findings underline the significant role of tempering temperature in enhancing the hydrogen embrittlement resistance of Cr-Mo low alloy steels.

The Current Status of the Development of Bearing Steels (베어링강의 개발동향)

  • 유선준
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.88-93
    • /
    • 2003
  • Several alloy bearing steels have been starting to replace for conventional high carbon and high chromium bearing steel since 1980. In this paper the global bearing developing trends were summarized in several important aspects- developments in alloy bearing steels for improved service life, development of inclusion rating method in bearing steel and developments in bearing service life testing.

Constitutive Relation of Alloy Steels at High Temperatures

  • Lee, Young-Seog
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.55-59
    • /
    • 2005
  • This paper presents a feasibility study whether Shida's constitutive equation being widely used for plain carbon steel in steel manufacturing industry can be extended to alloy steels with a due carbon equivalent model. T,he constitutive relation of the alloy steels (SAE9254, AISI52100 and AISI4140) is measured using hot deformation simulator (GLEEBLE 3500C) at high temperatures ($800^{\circ}C{\~}1000^{\circ}C$) within strain rates of $0.05{\~}40\;s^{-1}$. It has been found the predicted flow stress behavior (constitutive relation) of AISI52100 steel is in agreement with the measured one. On the other hand, the measured flow stress behavior of SAE9254 and AISI4140 steel partly concords with the predicted one when material experiences relatively high strain rate ($10{\~}40\;s^{-1}$) deformation at low temperature ($800^{\circ}C$). It can be deduced that, for AISI52100 steel, Shida's equation with the carbon equivalent model can be applicable directly to the roughing and intermediate finishing stand in hot rolling process for calculating the roll force and torque.

Characteristics on Corrosion Resistance of Medium High Carbon Low Alloy Steels using Plasma Nitriding Process (플라즈마 질화처리한 중, 고탄소저합금강의 내식성에 관한 연구)

  • 이병찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.702-711
    • /
    • 1998
  • The characteristics of corrosion resistance for the surface of medium high carbon steels and low alloy steels utilizing as manufacturing the machinery structures and machining tools and treating by plasma/ion nitriding process have been studied in terms of electrochemical polarization behav-iors including corrosion potential(Ecorr) anodic polarization trends and polarization resistance(Rp) The seven base materials showed a clear passivation behavior for the polarization tests in the ASTM standard solution 1N ${H_2){SO_4}$ Although the treated surface by plasma nitriding for the seven test materials showed a significant increase in hardness the treatment gave a detri-mental effect in corrosion resistance. The various characteristics including corrosion potential polarization curves microstructures corrosion current polarization resistance among non-treat-ed nitriding and/or soft-nitriding treated specimens have been investigated and some of the mechanisms discussed.

  • PDF

Hardenability of Low Alloy Sintered Mn Steels

  • Zendrona, Marianna;Molinari, Alberto;Girardini, Luca
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.834-835
    • /
    • 2006
  • Manganese is an alloying element that improves the hardenability of steels. It could be a valid substitute in sintered steels, increasing mechanical properties. The hardenability of three low alloy Mn steels was studied to establish the influence of manganese on the heat treatments. The Grossmann approach was adopted, which uses cylinders with different diameters to induce different gradients of cooling rate in the cross section. The correlation of microstructure and microhardness to the actual cooling rate makes the results independent on the process parameters and applicable to each industrial condition, once the actual cooling rate in the parts is known.

  • PDF

DEPENDENCY OF SINGLE-PHASE FAC OF CARBON AND LOW-ALLOY STEELS FOR NPP SYSTEM PIPING ON PH, ORIFICE DISTANCE AND MATERIAL

  • Moon, Jeong-Ho;Chung, Hung-Ho;Sung, Ki-Woung;Kim, Uh-Chul;Rho, Jae-Seong
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.375-384
    • /
    • 2005
  • To investigate the flow-accelerated corrosion (FAC) dependency of carbon steel (A106 Gr. B) and low-alloy steels (1Cr-1/2Mo, 21/4Cr-1Mo) on pH, orifice distance, and material, experiments were carried out. These experiments were performed using a flow velocity of 4 m/sec (partly 9 m/sec) at pH $8.0\~10.0$ in an oxygen-free aqueous solution re-circulated in an Erosion-Corrosion Test Loop at $130^{\circ}\;{\ldots}$ for 500 hours. The weight loss of the carbon steel specimens appeared to be positively dependent on the flow velocity. That of the carbon and low-alloy steel specimens also showed to be distinguishably dependent on the pH. At pH levels of $8.0\~9.5$ it decreased, but increased from 9.5 to 10.0. Utility water chemistry personnel should carefully consider this kind of pH dependency to control the water system pH to mitigate FAC of the piping system material. The weight loss of the specimens located further from the orifice in the distance range of $6.8\~27.2$ mm was shown to be greater, except for 21/4Cr-1Mo, which showed no orifice distance dependency. Low alloy steel specimens exhibited a factor of two times better resistance to FAC than that of the carbon steel. Based on this kind of FAC dependency of the carbon and low-alloy steels on the orifice distance and material, we conclude that it is necessary to alternate the composition of the secondary piping system material of NPPs, using low-alloy steels, such as 21/4Cr-1Mo, particularly when the system piping has to be replaced.

Evaluation of Dynamic Wettability of Liquid Zn with Steel Sheets Containing Si and Mn

  • Tanaka, Toshihiro
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.87-91
    • /
    • 2010
  • It is pointed out that non-wetting behavior of liquid Zn alloy occurs on high-tensile strength steels, which usually contain Si and Mn. There have been a lot of investigations to improve the above wettability of liquid Zn alloy with steels containing Si and Mn. Although those studies evaluated the wettability qualitatively by observation of the surface of steels galvanized by Zn or exfoliation test of Zn with substrate steels and so on, it is required to evaluate the wettability of liquid Zn with steels by measuring contact angle, work of adhesion, spreading velocity etc. which are usually used to assessment of general wetting behavior. In the present work, we evaluated the wettability of liquid Zn with steels containing Si and Mn by applying a sessile drop method to measure the change in contact angle and diameter of liquid Zn droplet wetted on steels.

A Study on Anti-Oxidation of Stainless Steel Spot Weld (스테인리스강 Spot 용접부의 산화방지에 관한 연구)

  • Huh, Dong-Woon;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.58-62
    • /
    • 2011
  • Stainless steels are alloy steels with a nominal chromium content of at least 11 percent, with other alloy additions. The stainlessness and corrosion resistance of these alloy steels are attributed to the presence of a passive oxide film on the surface. When exposed to conditions like Resistance Spot Welding (RSW) process that remove the passive oxide film, stainless steels are subject to corrosive attack. And exposure to elevated temperatures causes oxidation (discoloration) of areas around indentation in Spot welding. In this paper, deal with the effect of shielding gas (Ar) preventing the corrosion, oxidation of stainless steel. And find the optimal shielding gas flow rate. In addition, suggest effective purging method for direct/indirect spot welding process.