• Title/Summary/Keyword: Alloy element

Search Result 831, Processing Time 0.029 seconds

Thermal and mechanical analysis on friction stir welding of AZ31 magnesium alloy by the finite element method (유한요소법에 의한 AZ31마그네슘 합금의 마찰교반용접시 유동 및 강도 해석)

  • Kang, Dae-Min;Park, Kyoung-Do;Jung, Yung-Suk
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.64-71
    • /
    • 2013
  • In this paper, finite element method was used for flow and strength analysis of AZ31 magnesium alloy under friction stir welding. The simulations were carried out by SYSWELD s/w, and the modeling of sheet was doned by unigraphics NX3 s/w. Welding variables for analysis were rotating speed and welding speed of tool. Also two-way factorial design method was applied to confirm the effect of welding variables on maximum temperature and stress of material used. From these results, the increaser welding speed of tool the decreaser maximum temperature, but the increaser maximum stress. Also the increaser rotating speed of tool the increaser maximum temperature, but the decreaser maximum stress. In addition the increaser welding speed of tool and the decreaser rotating speed of tool, the narrower heat effect zone. Finally rotating speed of tool influenced on maximum temperature more than welding speed of tool, and welding speed of tool influenced on maximum stress more than rotating speed of tool from the variance analysis.

The Effect of Heat Treatment Hold Time for Mechanical Properties of Zinc-Magnesium Alloy (아연-마그네슘 합금의 열처리에 따른 기계적 특성 연구)

  • Hwang, Injoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.117-123
    • /
    • 2020
  • Due to high corrosion resistance, Zinc has been widely used in the automobile, shipping or construction industries as a galvanizing material. Zinc is popular as a coating element, but its low mechanical strength impede the expansion of applications as a load-bearing structure. The mechanical strength of Zinc can be increased through zinc based alloy process, but the ductility is significantly reduced. In this study, the mechanical strength and ductility of Zinc-Magnesium alloys with respect to heat treatment hold time was investigated. In order to enhance the mechanical strength of Zinc, a Zinc-Magnesium alloy was fabricated by a melting process. The heat treatment process was performed to improve the ductility of Zinc-Magnesium alloy. The microstructure of the heat-treated alloy specimen was analyzed using SEM. The hardness and compressive strength of the specimen were measured by a micro-hardness tester and a nano-indenter, respectively.

Development of New Bimetal Material for Home Appliances by Using the Rolling Process (압연공정을 이용한 가전용 신 바이메탈재의 개발)

  • Park, S.S.;Lee, J.H.;Bae, D.H.;Bae, D.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.375-380
    • /
    • 2007
  • The bimetals of home appliances are mainly manufactured by cladding process and these are almost consisted with Cu alloy and Ni alloy. But it is very difficult to clad these alloys, because the brittle $Cu_3O_4$ oxide film formed easily on Cu alloy surface during cladding process. Clad rolling and heat treatment processes were applied for the development of bimetals by using the Ni alloy and the 3 types of Cu alloys. Optical microstructure, micro-hardness, specific resistance, and deflection and line profile of newly processed bimetals specimens were observed and measured in this paper. Inter-diffusion was observed between Cu and Ni element in the interface of heat treated Cu alloy and Ni alloy clad material. The C1220 and Invar36 clad material showed the best property of deflection among the 3 kind of clad materials.

Effects of the Non-equilibrium Heat-treatment on Modification of Microstructures of Al-Si-Cu Cast Alloy (비평형 열처리에 의한 주조용 Al-Si-Cu합금 조직의 개량 효과)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.391-397
    • /
    • 2000
  • Addition of Ca element and nonequilibrium heat treatment which promotes shape modification of eutectic Si and ${\beta}$ intermetallic compound were conducted to improve the mechanical properties of Al-Si-Cu alloy. Modification of eutectic Si and dissolution of needle-shape ${\beta}$ intermetallic compounds were possible by nonequilibrium heat treatment in which specimens were held at $505^{\circ}C$ for 2 hours in Al-Si-Cu alloy with Fe. Owing to the decrease in aspect ratio of eutectic Si by the heat treatment of the alloy with 0.33wt.% Fe, the increase in elongation was prominent to be more than double that in the as-cast specimen. Dissolution of needle-shape ${\beta}$ intermetallic compounds in the alloy with 0.85wt.% Fe led to the improvement of tensile strength as the length of ${\beta}$ compounds decreased to 50%.

  • PDF

Study on the Yield Locus of Aluminum Alloy Sheet Using Biaxial Cruciform Specimens (2축 십자형 시편을 이용한 알루미늄 합금 판재의 항복곡면에 대한 연구)

  • Shin, H.D.;Park, J.G.;Park, C.D.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.416-421
    • /
    • 2009
  • The applications of the aluminum alloy sheets to the auto-body panels are dramatically increasing for weight reduction of the automobiles. However, low formability of the aluminum alloy sheet compared to the steel sheet can be obstacles in tool manufacturing processes. Therefore, many of yield criteria for the anisotropic materials such as the aluminum alloy sheet have been observed. In this study, the biaxial tensile test and FLD test for the aluminum alloy sheet are performed. The results are compared with Hill's 1948 and Hill's 1990 models by means of theoretical predictions. Finite element analysis was also performed using the proposed method for the real panel.

Study on the Yield Locus of Aluminum alloy sheet Using Biaxial Cruciform Specimens (2축 십자형 시편을 이용한 알루미늄 합금 판재의 항복곡면에 대한 연구)

  • Shin, H.D.;Park, J.G.;Park, C.D.;Ro, H.C.;Youn, K.T.;Lim, H.T.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.164-167
    • /
    • 2009
  • The applications of the aluminum alloy sheets to the auto-body panels are dramatically increasing for weight reduction of the automobiles. However, low formability of the aluminum alloy sheet compare to the steel sheet can be obstacles in tool manufacturing process. Therefore, much of yield criteria for the anisotropic material such as the aluminum alloy sheet have been observed. In this study, the biaxial tensile test and FLD test for the aluminum alloy sheet are performed. The results are compared with Hill's 1948 and Hill's 1990 model by means of theoretical predictions. Finite element analysis also performed using the proposed method for the real panel.

  • PDF

Observation of Shear Bonding Strength by Compositional Change and Firing Steps of the Ni-Cr Alloy for Porcelain Fused Metal Crown (금속-도재관용 Ni-Cr합금의 조성변화와 소성단계에 따른 전단결합강도)

  • Cho, Yong-Wan;Hong, Min-Ho;Kim, Won-Young;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2013
  • Purpose: This study was observation shear bonding strength by compositional change and firing step of a Ni-Cr alloy for porcelain fused metal crown. The aim of study was to suggest the material for firing step of Ni71-Cr14 alloy to development of alloy for porcelain fused to metal crown. Methods: The test was on the two kinds of Ni-Cr alloy specimens. The surfaces of two alloys were analyzed by EDX in order to observe oxide characteristic. And the shear test was performed by MTS. Results: The surface property and oxide characteristic analysis of oxide layer, weight percentage of Element O within $Ni_{71}Cr_{14}$ alloy measured 23.32wt%, and $Ni_{59}Cr_{24}$ alloy was measured 23.03wt%. And the maximum shear bonding strength was measured 58.02MPa between $Ni_{59}Cr_{24}$ alloy and vintage halo(H4 group). Conclusion: The surface property and oxide characteristic three kind of Ni-Cr alloy was similar. and shear bonding strength showed the highest bonding strength in H4 specimens.