• Title/Summary/Keyword: Alloy addition

Search Result 1,224, Processing Time 0.027 seconds

Acoustic Nonlinearity of Narrow-Band Surface Wave Generated by Laser Beam with Line-Arrayed Slit Mask (선배열 슬릿마스크를 이용한 협대역 레이저 여기 표면파의 음향 비선형성)

  • Choi, Sung-Ho;Nam, Tae-Hyung;Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1877-1883
    • /
    • 2010
  • We examined the mechanism of generation of higher harmonics by theoretically analyzing the frequency characteristics of a narrow-band surface wave generated by a laser beam with line-arrayed slit masks. We experimentally analyzed the effects of slit opening width and laser intensity on the acoustic nonlinearity of aluminum 6061-T6 alloy by using single-slit and line-arrayed slit masks. The magnitude of the harmonic wave depended on the slit opening width. In our experiment, we generated a 1.75-MHz surface wave by using an arrayed slit with intervals of 1.67 mm. The magnitude of the second harmonic component decreased about by 80% when the slit opening width was increased from 0.5 mm to 1.0 mm. In addition, the relationship between the magnitudes of the fundamental and the second harmonic wave showed good linearity, which agreed well with the typical behavior of acoustic nonlinearity.

Aluminum Powder Metallurgy Current Status, Recent Research and Future Directions

  • Schaffer, Graham
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.7-7
    • /
    • 2001
  • The increasing interest in light weight materials coupled to the need for cost -effective processing have combined to create a significant opportunity for aluminum P/M. particularly in the automotive industry in order to reduce fuel emissions and improve fuel economy at affordable prices. Additional potential markets for Al PIM parts include hand tools. Where moving parts against gravity represents a challenge; and office machinery, where reciprocating forces are important. Aluminum PIM adds light weight, high compressibility. low sintering temperatures. easy machinability and good corrosion resistance to all advantages of conventional iron bm;ed P/rv1. Current commercial alloys are pre-mixed of either the AI-Si-Mg or AL-Cu-Mg-Si type and contain 1.5% ethylene bis-stearamide as an internal lubricant. The powder is compacted in closed dies at pressure of 200-500Mpa and sintered in nitrogen at temperatures between $580~630^{\circ}C$ in continuous muffle furnace. For some applications no further processing is required. although most applications require one or more secondary operations such as sizing and finishing. These sccondary operations improve the dimension. properties or appearance of the finished part. Aluminum is often considered difficult to sinter because of the presence of a stable surface oxide film. Removal of the oxide in iron and copper based is usually achieved through the use of reducing atmospheres. such as hydrogen or dissociated ammonia. In aluminum. this occurs in the solid st,lte through the partial reduction of the aluminum by magncsium to form spinel. This exposcs the underlying metal and facilitates sintering. It has recently been shown that < 0.2% Mg is all that is required. It is noteworthy that most aluminum pre-mixes contain at least 0.5% Mg. The sintering of aluminum alloys can be further enhanced by selective microalloying. Just 100ppm pf tin chnnges the liquid phase sintering kinetics of the 2xxx alloys to produce a tensile strength of 375Mpa. an increilse of nearly 20% over the unmodified alloy. The ductility is unnffected. A similar but different effect occurs by the addition of 100 ppm of Pb to 7xxx alloys. The lend changes the wetting characteristics of the sintering liquid which serves to increase the tensile strength to 440 Mpa. a 40% increase over unmodified aIloys. Current research is predominantly aimed at the development of metal matrix composites. which have a high specific modulus. good wear resistance and a tailorable coefficient of thermal expnnsion. By controlling particle clustering and by engineering the ceramic/matrix interface in order to enhance sintering. very attractive properties can be achicved in the ns-sintered state. I\t an ils-sintered density ilpproaching 99%. these new experimental alloys hnve a modulus of 130 Gpa and an ultimate tensile strength of 212 Mpa in the T4 temper. In contest. unreinforcecl aluminum has a modulus of just 70 Gpa.

  • PDF

Fabrication and Characterization of Aluminum Honeycomb Panel (경량 알루미늄 허니콤 판재의 제작 및 특성 평가)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.666-671
    • /
    • 2018
  • A honeycomb panel is a plate made by attaching two surface plateson eitherside of a honeycomb core. The honeycomb plate hasexcellent specific strength and energy absorption and is suitable for use in regions where good impact resistance is required. Recently, with the increasing the need for a lightweight design to facilitate transportation, numerous studies have been conducted using aluminum honeycomb plates as body materials for vehicles such as automobiles and high-speed trains. In addition, honeycomb plates have excellent sound deadening properties, as well as excellent heat insulation and durability. Savings in weight using lightweight materials such as aluminum alloy for honeycomb panel's skin can lead to increase fuel economy and reduction in air pollution. In this study, in order to improve the design technology of the honeycomb plate material, the manufacturing technology of the aluminum honeycomb core and honeycomb plate material and various mechanical properties of the honeycomb plate were evaluated. From the results, it was found that the design of the manufacturing process of the aluminum honeycomb plate, as well as itsproduction and characteristics, were improved. The resulting excellent energy absorption capability of the honeycomb plate was due to the repetitive core buckling, indicating that the higher the compressive strength, the higher the strength per bonded area.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

A Study on Denitrification by Sulfur-Oxidizing Bacteria for the Industrial Wastewater Contain Fluoride and Nitrogen (불소.질소 함유 폐수의 황산화탈질에 관한 연구)

  • Cho, Nam-Chan;Moon, Jong-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.774-781
    • /
    • 2011
  • Nitric acid and hydrofluoric acid are used for acid pickling in zirconium alloy tubing manufacturing process. Nitrate and fluoride in the wastewater were treated by chemical coagulation and SOD (Sulfur Oxidation Denitrification) process. This study is investigated the effect of fluoride concentration and the optimal condition for SOD process. The limited fluoride concentration for SOD process was below 20 mg F-/L. The adjusted pH and alkalinity by NaOH and $NaHCO_3$ was shown to be more effective for removal of nitrate compared with using NaOH. Furthermore, the microbial activator mixed trace elements and ingredient for alkalinity did not only supplement with alkalinity but also enhance the growth and proliferation for sulfur-oxidizing bacteria. As a result, the inorganic industrial wastewater was successfully treated by the microbial activator in SOD process without continuous addition of seed sludge. Finally, SOD process was shown to remove nitrate in industrial wastewater and to contribute the microbial activator for activation of sulfur-oxidizing bacteria.

Influence of the Cr-Carbides on the Mechanical Characteristics during Isothermal Heat-Treatment of the Mod.9Cr-1Mo Steel (Mod.9Cr-1Mo강의 항온변태시 기계적 특성변화에 미치는 Cr탄화물의 영향)

  • Hur, Sung-Kang;Lee, Jae-Hyun;Gu, Ji-Ho;Shin, Kee-Sam;He, Yinsheng;Shin, Jong-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.46-53
    • /
    • 2012
  • In this study, mechanical tests and microstructural analyses including TEM analyses with EDX of precipitates in modified 9Cr-1Mo steel were carried out to determine the cause of embrittlement observed after heat-treatment, which limits the usage of the alloy for power plants. Mod. 9Cr-1Mo steel specimens at austenite temperature were quenched to the molten salt baths at $760^{\circ}C$ and $700^{\circ}C$, in which the specimens were kept for 10 min ~ 10 hr with subsequent air-cooling. Impact tests showed that the impact value dropped abruptly when the specimens were kept longer than 30 min at $\sim760^{\circ}C$ reaching to minima in about 1 hr, and then increasing at further retention. The tensile strength of the specimens reached the minimum value without much change afterward, whereas the values of elongation showed the same trend as that of the impact value. The isothermally heat-treated steel at $700^{\circ}C$ also showed a minimum impact value in about 1 hr. These results suggest that the isothermal heattreatment at 760 and $700^{\circ}C$ for about 1 hr induces temporal embrittlement in Mod. 9Cr-1Mo steel. The microstructural examination of all the specimens with extraction replica of the carbides revealed that the specimens with temporal embrittlement had $Cr_2C$, indicating that the cause of the embrittlement was the precipitation of the $Cr_2C$. In addition, TEM/EDX results showed that the Fe/Cr ratio was 0.033 to 0.055 for $Cr_2C$, whereas it was 0.48 to 0.75 for $Cr_{23}C_6$, making the distinction of the $Cr_2C$ and $Cr_{23}C_6$ possible even without direct electron diffraction analyses.

Mechanical Properties and Electrical Conductivities of In-Situ Cu-9Fe-1.2X(X=Ag, Cr, Co) Microcomposite Wires (Cu-9Fe-1.2X (X=Ag, Cr, Co)계 미세복합재료전선의 기계적 특성 및 전기전도도)

  • Song, Jae-Suk;Im, Mun-Su;An, Jang-Ho;Hong, Sun-Ik
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • In this study, microstructure and mechanical properties and electrical conductivities of in situ Cu-Fe-Xi(Xi=Ag, Cr or Co) alloy wires obtained by cold drawing combined with intermediate heat treatments have investigated. During cold working the primary and secondary dendrite arms are aligned along the drawing direction and elongated into filaments after deformation processing. The addition of Ag was found to be more effective in reducing the microstructural scale at the given draw ratio than that of Co or Cr throughout the drawing processing. The ultimate tensile strength and the conductivity of the Cu-Fe based composites containing Ag were higher than those of Cu-Fe composites containing Co or Cr. The good mechanical and electrical properties of Cu-Fe-Ag wires may be associated with the more uniform distribution of the finer filaments in the wires containing silver. The strength of Cu-Fe-Xi composites is dependent on the spacing of the Fe filaments in accord with a Hall-Petch relationship. The fracture surfaces of all the specimens showed ductile-type fracture and iron filaments occasionally observed on the fracture surfaces.

  • PDF

Biological markers around immediately placed titanium implant in the extraction socket of diabetic and insulin-treated rat maxilla

  • Park, Su-Hyun;Heo, Hyun-A;Lee, Won;Pyo, Sung-Woon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.4
    • /
    • pp.204-211
    • /
    • 2012
  • Objectives: Dental implants installation in patients with diabetes remains controversial as altered bone healing around implants has been reported. And little is known about the biological factors involved in bone healing around implants. The present study aimed to investigate the biological markers around immediately placed implants in rats with controlled and uncontrolled diabetes. Materials and Methods: Twenty rats (40 sites) were divided into the control, insulin-treated and diabetic groups. The rats received streptozotocin (60 mg/kg) to induce diabetes; animals in the insulin-treated group also received three units of subcutaneous slow-release insulin. Two threaded titanium alloy implant ($1.2{\times}3mm$) were placed in the extraction socket of the both maxillary first molars and allowed for healing. Bone blocks including implant were harvested at 3 days, 1, 2 and 4 weeks. The levels of bone morphogenetic protein (BMP)-4, transforming growth factor (TGF)-${\beta}1$, osteocalcin (OC) and osteonectin (ON) were measured in the peri-implant osseous samples by RT-PCR. Results: The BMP-4 level increased immediately in all groups by day 3, then decreased abruptly in the control and the insulin-treated groups. However, by week 4, all groups showed mostly the same amount of BMP-4 expression. The level of TGF-${\beta}1$ also instantly increased by day 3 in the insulin-treated group. This level elevated again reaching the same values as the control group by week 4, but was not as high as the diabetic group. In addition, the expression of OC and ON in the control and insulin-treated groups was higher than that of the diabetic group at 2 weeks and 4 weeks, indicating active bone formation in these groups. Conclusion: The immediate placement of titanium implants in the maxilla of diabetic rat led to an unwanted bone healing response. Conclusively, the results of this study suggest that immediate implant insertion in patients with poorly controlled diabetes might be contraindicated.

Dispersion Method of Silica Nanopowders for Permalloy Composite Coating (퍼멀로이 합금도금을 위한 나노실리카 분산방법에 관한 연구)

  • Park, So-Yeon;Jung, Myung-Won;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.39-42
    • /
    • 2011
  • The composite electroplating is accomplished by adding inert materials during the electroplating. Permalloy is the term for Ni-Fe alloy and it is used for industrial applications due to its high magnetic permeability, surface wear resistance, corrosion protection. Microhardness for microdevices is enhanced after composite coating and it increases the life cycle. However, the hydroxyl group on the silica makes their surface susceptible to moisture and it causes the silica nanoparticles to be agglomerated in the aqueous solution. The agglomeration problem causes poor dispersion which eventually interrupts uniform deposition of silica nanoparticles. In this study, the dispersion of silica nanoparticles in the permalloy electroplated layer is reported with variation of additives and current densities. The optimum current density was 20 $mA/cm^2$ and the silica content was 9 at% at $50^{\circ}C$. The amount of silica nanopowder codeposition and surface morphologies were influenced with variation of additives. In the bath, smooth surface morphology and relatively high contents of silica nanopowder codeposition were obtained with addition of sodium lauryl sulfate.

Impact Properties and Fractography of Structural Materials for LNG Tank at Cryogenic Temperatures (LNG 저장탱크용 재료의 극저온 충격특성과 파면해석)

  • Shin Hyung-Seop;Lee Hae-Moo;Shin Ju-Yeong;Park Jong-Seo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.99-106
    • /
    • 1998
  • In order to investigate the impact properties of structural materials for LNG tank, instrumented Charpy impact tests were carried out at cryogenic temperatures. $9\%$ Ni steel showed a superior fracture resistance because of less degradation in toughness until 77 K. From the load-deflection curve obtained by an instrumented methods it was found that with the decrease of temperature from 173 K to 77 K, the peak load in the curve increased, but the total absorbed energy decreased. In addition, the energy absorbed during the crack growth was larger than one absorbed in the process of crack initiation. In SUS304L material, the energy absorbed in the process of the crack initiation was relatively large, but the energy absorbed in the process of crack growth was small, the behavior of absorbed energy was well agreed with the observations of the fracture surface which showed a relatively smooth fracture surface. The absorbed Charpy impact energy in the case of A5083 alloy was lower as compared with other steels, and some cracks were observed along the crack propagation direction at the fracture surface of 77 K.

  • PDF