• Title/Summary/Keyword: Allowable range

Search Result 315, Processing Time 0.03 seconds

A Control Value Analysis on the Axial Force of Braced Excavation Walls Used In Korea (국내 적용되고 있는 흙막이구조물의 축력에 대한 관리기준치 분석)

  • Jung, Sang-Kug;Lee, Kwang-Chan;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.171-180
    • /
    • 2000
  • This study aims to present a more reasonable control value than the exiting one by comparing and analyzing control values and field instrumentation values of the whole excavation depth of the four case sites using geometric averaging as a statistical method. The range of the study is confined to three things: (1) the axial force of the braced excavation walls among a variety of items prescribed in the control values by stress deformation of walls and adjacent structures; (2) by approximation of the allowable and design value; (3) and by safety factor. As a res it is desirable to revise "(Long term allowable stress + Short term allowable stress)/2 ~ Short term allowable stress," presented in the present control values by stress deformation of walls and adjacent structures, to "(Long term allowable stress + Short term allowable stress)/5 ~ (Short term allowable stress)/3." The result also shows that since there is a difference of about 3.5%, it is not necessary to revise 70, 90, and 100 percent of LEVEL I, II, and III, prescribed in the control values by the allowable and design value approximation. In addition, modifying the control value by the safety factor, now 1.07, is unnecessary, although it varies little difference from the present value.

  • PDF

The Estimation of Bearing Capacity of Auger-drilled Pile in Sand-Gravel by Dynamic Load Test (동재하시험에 의한 모래자갈층에 근입된 매입말뚝의 지지력 산정)

  • Choi, Ki-Chul;Moon, Yu-Ho;Oh, Won-Keun;Chun, Byung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1819-1826
    • /
    • 2007
  • This study results of performed field load test in order to estimate the best pile length assessment and allowable bearing capacity of the pile foundation. End of initial driving(EOID) and restrike of pile dynamic loading tests were performed to calculate allowable bearing capacity of the experimental pile side and results were compared with the allowable bearing capacity estimated by theory. The results of allowable bearing capacity by EOID test is $1.08{\sim}1.21$ in the range of compared to the capacity calculated by the Structure Foundation Design Criterion. Allowable bearing Capacity by restrike of pile dynamic loading test is $1.32{\sim}1.48$ in the range of compared to the Structure Foundation Design Criterion. The Foundation Design Criterion underestimated the pile capacity. If the bearing capacity calculated by Structure Foundation Design Criterion is 100, EOID of pile dynamic loading test is 116, restrike of pile dynamic loading test is 138 for 20m pile used in this experimental.

  • PDF

ML-based Allowable Axial Loading Estimation of Existing RC Building Structures (기계학습 기반 노후 철근콘크리트 건축물의 축력허용범위 산정 방법)

  • Hwang, Heejin;Oh, Keunyeong;Kang, Jaedo;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.257-266
    • /
    • 2024
  • Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.

A Study on the Allowable Range of Overhanging Berthing at the Port of Ulsan

  • Kim, Seungyeon;Yu, Yongung;Lee, Yunsok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • As vessels become larger and competition between ports intensifies, there has been an increase in the number of cases where vessels that exceed the available berths are berthed at the pier. Therefore, there has been an increase in the number of cases in which the bow or stern of a ship is projected and moored. The risk of overhanging berthing is that mooring safety can be compromised because it is not possible to connect the bow and stern mooring line to the ship properly. In addition, collision accidents may occur between moving vessels if the view of a vessel moving in the port is obstructed. Therefore, in this study, the simulation of mooring safety was performed according to the overhanging range in Piers No. 6 and 7 in Ulsan's main port to propose the overhanging limit and operational standards according to each ship. As a result of the assessment, 30,000 DWT bulkers are able to overhang up to 0.75B, and 50,000 DWT bulkers can overhang up to 0.50B. The results of this study are expected to be used as basic data for setting the allowable overhang limit, as well as clear usage criteria for safe unloading operations.

Estimation of Allowable Drop Height for Oriental Pears by Impact Tests (충격시험에 따른 배의 허용낙하높이 추정)

  • Kim, M. S.;Jung, H. M.;Seo, R.;Park, I. K.;Hwang, Y. S.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.461-468
    • /
    • 2001
  • Impact between fruits and other materials is a major cause of product damage in harvesting and handling systems. The oriental pears are more susceptible to bruising than other fruits such as European pears and apples, and are required more careful handling. The interest in the handling of the pears for the processing systems has raised the question of the allowable drop height to which pears can be dropped without causing objectionable damage. Drop tests on pears were conducted using an impact device developed by authors to estimate the allowable drop height without bruising. The impact device was constructed to hold in a selected orientation and to release a fruit by vacuum for dropping on to a force transducer. The drop height was adjustable for zero to 60 cm to achieve the desired distance between the bottom of the fruits and the top of the impact force transducer. The transducer was secured to 150 kg$\sub$f/ concrete block. The transducer signal was sampled every 0.17 ms with a strain gage measurement board in the micro computer where it was digitaly stored for later analysis. The selected sample fruit was Niitaka cultivar of pears which is one of the most promising fruit for export in Korea. The pears were harvested during the 1998 harvest season from an orchard in Daejeon. The sample fruit was selected from two groups which were stored for 3 months and 5 months respectively by the method of current commercial practice. The pears were allowed to stabilize at environmental condition(18$^{\circ}C$, 65% rh) of the experimental room. One hundred fifty six pears were tested from the heights of 5, 7.5. 10 and 12.5 cm while measurement were made of impact peak force, contact time, time to peak force, dwell time, pear diameter and mass. The bioyield strength and modulus of elasticity were measured using UTM immediately after each drop test. The allowable drop height was estimated on the base of bioyield strength of the pears in two ways. One was assumed the peak force during impact test increasing linearly with time, and the other was based on the actual drop test results. The computer program was developed for measuring the impact characteristics of the pears and analyzing the data obtained in the study. The peak force increased while contact times decreased with increasing drop height and contact times of the sample from the hard tissue group. The allowable drop height increased with increasing bioyield strength and contact times, and also varied with Poisson\`s ratio, mass and equilibrium radius of the pears. The allowable drop height calculated by a theoretical method was in the range from 1 to 4 cm, meanwhile, the estimated drop height considering the result of the impact test was in the range from 1 to 6 cm. Since the physical properties of fruits affected significantly the allowable drop height, the physical properties of the fruits should be considered when estimating the allowable drop height.

  • PDF

Measurements of Mechanical Behavior of Rough Rice under Impact Loading (벼의 충격(衝擊) 특성(特性)에 관한 연구(硏究))

  • Cha, J.Y.;Koh, H.K.;Noh, S.H.;Kim, M.S.;Kim, Y.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.207-214
    • /
    • 1989
  • In this study, impact force and angular displacement of the pendulum were measured by the load cell and potentiometer. Mechanical behavior of rough rice under impact loading was able to analyze precisely and efficiently, because measured data were accumulated and handled by the automatic data acquisition system making use of microcomputer system. Impact force and angular displacement were measured with a resolutiln of 1/1500 seconds in time. Mechanical behavior such as force and energy at rupture point of Japonica type and Indica type rough rice were measured with this system. After impact loading, the damage of rough rice was examined with the microphotograph and an allowable impact force was measured. The results obtained in this study are summarized as follows. 1. Machanical behavior of rough rice under impact loading was analyzed precisely and efficiently because measured data were accumulated and handled by this data acquisition system. 2. Rupture force and rupture energy of rough rice were appeared to be the lowest value in the range of 16 to 18 % moisture content, and rupture force and rupture energy of Japonica type were higher than those of Indica type in each level of moisture content. 3. From the result of the damage examined after the impact loading, allowable impact force was the lowest in the range of 16 to 18 % moisture content, and the value of the allowable impact force of Japonica type was higher than that of Indica type in each level of moisture content.

  • PDF

전기로 조업에서의 작업 단위 편성

  • 박형우;신동민;홍유신
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.566-569
    • /
    • 1996
  • Steel making using EAF (Electric Arc Furnace) consists of three major processes: molten steel making, slab casting and hot rolling. Orders from customers, which includes their requirements such as composition, order quantity with allowable range, width, thichness, and unit weight of coils etc, are grouped as charges for EAF to enhance the productivity of the furnace. This paper develops an efficient grouping algorithm for charges in the EAF by exploiting the order characteristics: the allowable ranges of furnace capacity, order quantity, and unit weight of coils. Numerical test shows that the proposed heuristic works very efficiently and the results are quite satisfactory.

  • PDF

A Relative Study on Safe Factor by Different Analyses of Slope Stability (EPS공법에 의한 측방유동 저감효과에 관한 해석적 연구)

  • An, Joon-Hee;Jang, Jeong-Wook;Park, Choon-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1181-1186
    • /
    • 2006
  • This study analyzed the reductive effect of lateral flow by the section and height of reinforcement of EPS. The conclusions of the study are as follows. (1) The lateral flow increased as the section of reinforcement decreased. The reinforcement section that satisfied the allowable range of the lateral flow turned out to beapproximately 80% of the standard reinforcement section. (2) As reinforcement height was decreasing, the lateral flow increased. The reinforcement heigh that satisfied the allowable range of the lateral flow turned out to be approximately 50% of the total lateral height of abutment.

  • PDF

A Study on the Uncertainty of Structural Cross-Sectional Area Estimate by using Interval Method for Allowable Stress Design

  • Lee, Dongkyuc;Park, Sungsoo;Shin, Soomi
    • Architectural research
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2007
  • This study presents the so-called Modified Allowable Stress Design (MASD) method for structural designs. The objective of this study is to qualitatively estimate uncertainties of tensile steel member's cross-sectional structural designs and find the optimal resulting design which can resist all uncertainty cases. The design parameters are assumed to be interval associated with lower and upper bounds and consequently interval methods are implemented to non-stochastically produce design results including the structural uncertainties. By seeking optimal uncertainty combinations among interval parameters, engineers can qualitatively describe uncertain design solutions which were not considered in conventional structural designs. Under the assumption that structures have basically uncertainties like displacement responses, the safety range of resulting designs is represented by lower and upper bounds depending on given tolerance error and structural parameters. As a numerical example uncertain cross-sectional areas of members that can resist applied loads are investigated and it demonstrates that the present design method is superior to conventional allowable stress designs (ASD) with respect to a reliably structural safety as well as an economical material.

A Control Value Analysis on the Horizontal Displacement of Braced Excavation Walls Used In Korea (국내 적용되고 있는 흙막이구조물의 수평변위에 대한 관리기준치 분석)

  • Jeong, Sang-Guk;Yang, Jae-Hyouk;Kim, Ju-Hyun;Kim, Jong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.169-176
    • /
    • 2001
  • This study aims to present a more reasonable control value than the exiting one by comparing and analyzing control values and field instrument8tion values of the whole excavation depth of the four case sites, using geometric averaging as a statistical method. The range of the study is confined to the horizontal displacement of braced excavation walls among a variety of items, prescribed in the control values by approximately of the allowable and design values, and by safety factors. As a result, it is desirable to revise 70, 90, and 100 percent of LEVEL I, II, and III, respectively. The horizontal displacement values of the allowable and design values approximations should change to 104, 133, and 148 percent of the allowable and design values, respectively. In addition, modifying the horizontal displacement control value of the braced excavation walls is not needed. The horizontal displacement value, presented in the control value as a safety factor, is now 1.19, as it has a slight difference from the present value.

  • PDF