• Title/Summary/Keyword: Allowable load

Search Result 507, Processing Time 0.025 seconds

A Study on the Engineering Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Finite Element Analysis (실규모 현장시험 및 유한요소해석을 통한 강관매입말뚝의 공학적 거동에 대한 연구)

  • Kim, Jeong-Sub;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.5-16
    • /
    • 2018
  • In the current study, the engineering behaviour of prebored and precast steel pipe piles was examined from a series of full-scale field measurements by conducting static pile load tests, dynamic pile load tests (EOID and restrike tests) and Class-A and Class-C1 type numerical analysis. The study includes the pile load - settlement relations, allowable pile capacity and shear stress transfer mechanism. Compared to the allowable pile capacity obtained from the static pile load tests, the dynamic pile load tests and the numerical simulation showed surprisingly large variations. Overall among these the restrike tests displayed the best results, however the reliability of the predictions from the numerical analysis was lower than those estimated from the dynamic pile load tests. The allowable pile capacity obtained from the EOID tests and the restrike tests indicated 20.0%-181.0% (avg: 69.3%) and 48.2%-181.1% (avg: 92.1%) of the corresponding measured values from the static pile loading tests, respectively. Furthermore, the computed results from the Class-A type analysis showed the largest scatters (37.1%-210.5%, avg: 121.2%). In the EOID tests, a majority of the external load were carried by the end bearing pile capacity, however, similar skin friction and end bearing capacity in magnitude were mobilised in the restrike tests. The measured end bearing pile capacity from the restrike tests were smaller than was measured from the EOID tests. The present study has revealed that if the impact energy is not sufficient in a restrike test, the end bearing pile capacity most likely will be underestimated. The shear stresses computed from the numerical analysis deviated substantially from the measured pile force distributions. It can be concluded that the engineering behaviour of the pile is heavily affected if a slime layer exists near the pile tip, and that the smaller the stiffness of the slime and the thicker the slime, the greater the settlement of the pile.

Proposal of Return Period and Basic Wind Speed Map to Estimate Wind Loads for Strength Design in Korea (강도설계용 풍하중 평가를 위한 재현기간과 기본풍속지도의 제안)

  • Ha, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.29-40
    • /
    • 2018
  • Strength design wind loads for the wind resistance design of structures shall be evaluated by the product of wind loads calculated based on the basic wind speed with 100 years return period and the wind load factor 1.3 specified in the provisions of load combinations in Korean Building Code (KBC) 2016. It may be sure that the wind load factor 1.3 in KBC(2016) had not been determined by probabilistic method or empirical method using meteorological wind speed data in Korea. In this paper, wind load factors were evaluated by probabilistic method and empirical method. The annual maximum 10 minutes mean wind speed data at 69 meteorological stations during past 40 years from 1973 to 2012 were selected for this evaluation. From the comparison of the results of those two method, it can be found that the mean values of wind load factors calculated both probability based method and empirical based method were similar at all meteorological stations. When target level of reliability index is set up 2.5, the mean value of wind load factors for all regions should be presented about 1.35. When target level of reliability index is set up 3.0, wind load factor should be presented about 1.46. By using the relationship between importance factor(conversion factor for return period) and wind load factor, the return periods for strength design were estimated and expected wind speeds of all regions accounting for strength design were proposed. It can be found that return period to estimate wind loads for strength design should be 500 years and 800 years in according to target level of reliability index 2.5 and 3.0, respectively. The 500 years basic wind speed map for strength design was suggested and it can be used with a wind load factor 1.0.

Stress-strain Behavior of Hardened Barrier on Soft Soil (연약지반 위에 포설된 고화차수재의 응력-변형 특성)

  • 장연수;이종호;임학수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.607-614
    • /
    • 2000
  • Settlement with crack on the hardened liners may occur in the weak clay due to waste load since the stiffness of the hardened liner is greater than that of the clay layers. Way of reducing deformation crack in the hardened liner is investigated using two computer programs, CONSOL and FLAC. The computer program CONSOL estimates the magnitude of settlement with time in clay layers and FLAC analyses the stress and deformation relationship between the foundation of landfill and waste load. The results show that a representative block of the analyzed area reaches the consolidation settlement of 1.32m, 8.8 years after the disposal of waste started with the degree of consolidation U=90%. The stress within the hardened liner exceeds the allowable vertical stress of 5kg/$\textrm{cm}^2$ and horizontal stress of 1.67kg/$\textrm{cm}^2$ at the concave part of the liner where the main and branch drainage pipes of leachate are located. It was recognized that the thickness of the interested area should be enlarged or the strength of the same area should be improved to tolerate the planned waste load.

  • PDF

A Study on the Harmonic Current Characteristic and Emission Value Assess Method Considering the Linear Load (선형부하가 고려된 고조파 전류 특성 및 방출값 평가)

  • Park, Yong-Up;Choi, Seung-Hoon;Chang, Joon-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • In order to operate the power system satisfactory for both system operators and customers, it is important to limit the harmonic currents to the allowable levels which injected into the system from the distorting installations. In this regard, the principles for the allocation of emission limits on individual customer were introduced in the technical report of IEC61000-3-6. According to these general principles, the emission limits are dependent on the agreed power of the customer, the power of the harmonic-generating equipment, and the system characteristics. The considerations in this report are very comprehensive and the process introduced is practical enough to implement as it is. However, there is a fact not appropriately dealing in the report that could be a very tickle but has a huge impact on determining the emission limit. This is the effect of non-harmonic load currents. More precisely, these are from the equipments which do not emit any harmonic or may emit harmonics but this specific order under the consideration by themselves if the source power is sinusoidal. The load currents originated from these equipments have an effect of active filter against the specific order of harmonic therefore, these should be dealt as a significant factoron the process of determining the emission limits for individual customer.

Determination of minimum depth of prestressed concrete I-Girder bridge for different design truck

  • Atmaca, Barbaros
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • The depth of superstructure is the summation of the height of girders and the thickness of the deck floor. In this study, it is aim to determine the maximum span length of girders and minimum depth of the superstructure of prestressed concrete I-girder bridge. For this purpose the superstructure of the bridge with the width of 10m and the thickness of the deck floor of 0.175m, which the girders length was changed by two meter increments between 15m and 35m, was taken into account. Twelve different girders with heights of 60, 75, 90, 100, 110, 120, 130, 140, 150, 160, 170 and 180 cm, which are frequently used in Turkey, were chosen as girder type. The analyses of the superstructure of prestressed concrete I girder bridge was conducted with I-CAD software. In the analyses AASHTO LRFD (2012) conditions were taken into account a great extent. The dead loads of the structural and non-structural elements forming the bridge superstructure, prestressing force, standard truck load, equivalent lane load and pedestrian load were taken into consideration. HL93, design truck of AASHTO and also H30S24 design truck of Turkish Code were selected as vehicular live load. The allowable concrete stress limit, the number of prestressed strands, the number of debonded strands and the deflection parameters obtained from analyses were compared with the limit values found in AASHTO LRFD (2012) to determine the suitability of the girders. At the end of the study maximum span length of girders and equation using for calculation for minimum depth of the superstructure of prestressed concrete I-girder bridge were proposed.

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이 기구)

  • Kwon, Oh-Sung;Cho, Sung-Min;Jung, Sung-Jun;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.57-64
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of the rock socketed pile should be well known. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanisms of drilled shaft socketed into weathered rock was investigated. For that, 5 cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the field test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The side shear resistance of the pile in moderately weathered rock reached to yielding point at a few millimeter displacements, and after that, the rate of resistance increment dramatically decreased. However, that in the highly /completely weathered rock did not show the obvious yielding point, and gradually increased showing the hyperbolic pattern until with the relatively high displacement (>10 mm). The end bearing-displacement curves showed linear increase at least until with the base displacement of approximately 10 mm, regardless rock mass conditions.

  • PDF

Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller (자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어)

  • Jeong, Hyeong-Hwan;Kim, Sang-Hyo;Ju, Seok-Min;Heo, Dong-Ryeol;Lee, Gwon-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.95-106
    • /
    • 2000
  • The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

  • PDF

Study on the Effectiveness of Preloading Method on Reinforcement of the Pile Foundation by 3D FEM Analysis (3차원 수치해석을 이용한 공동주택 수직증축용 기초 보강 선재하공법 효과 분석)

  • Wang, Cheng-Can;Han, Jin-Tae;Jang, Young-Eun;Ha, Ik-Soo;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.47-57
    • /
    • 2018
  • In recent years, vertical extension remodeling of apartment building is considered as one of the efficient ways to broaden and enhance the utilization of existing buildings due to the rapid development of population and decrement of land resources. The reinforcement of foundation is of great importance to bearing the additional load caused by the added floors. However, because of the additional load, the carried load by the existing piles would be in excess of its allowable bearing capacity. In this study, a conceptual construction method called preloading method was presented. The preloading method applies force onto the reinforcing pile before vertical extension construction. The purpose of preloading is to transfer partial load applied on the existing piles to reinforcing piles in order to keep each pile not exceeding the allowable capacity and to mobilize resistance of reinforcing pile by developing relative settlement. The feasibility and effect of preloading method was investigated by using finite numerical method. Two simulation models, foundation reinforcement with preloading and without preloading, were developed through PLAXIS 3D program. Numerical results showed that the presented preloading method is capable of sharing partial carried load of existing pile and develops the mobilization of reinforcing pile's frictional resistance.

Optimum design of pile foundations (말뚝기초의 최적설계)

  • Lee, Myeong-Hwan;Hong, Heon-Seong;Lee, Won-Je
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.60-78
    • /
    • 1994
  • For the optimum design of pile foundations, the determination of allowable load should take both the material strength and the geotechnical characteristics of the site into consideration. Through survey of previous construction records in Korea, it was found that most of the design is overconservative and in some cases the design load was higher than the constructed quality. Proper analysis making use of WEAP and monitoring of pile driving by PDA have been proved to solve most of the prevailing problems. In addition, the time effect in the evaluation of pile bearing capacity has the must significant effect and should not be ignored in the pile design.

  • PDF

A Study on the Behavior of Welded Connections (용접 연결부의 거동에 관한 연구)

  • 안주옥;윤영만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.145-151
    • /
    • 1994
  • Welded connections have been designed on basis of allowable stresses, wherein the response to loading is assumed to be totally elastic. This is the vector analysis method, which resolves the stresses determined from the direct stress formula and the torsion formula into a vector combination to obtain a solution. It has been known that this method gives conservative answers and typically a very high factor of safety. An analytical method based on the Instantaneous Center of Rotation has been developed which predicts the ultimate strength of an eccentically loaded fillet welded connection. The method of Instantaneous Center of Rotation results in weld resistance capacities greater than the vector analysis method, by recognizing the variation in fillet weld strength with respect to the direction of the applied loading and actual load-deformation response of elemental fillet welds. The procedure of numerical analysis is iterative and complex. The relations between vector analysis method and the method of Instantaneous Center of Rotation on eccentrical distance subjected to variation of load direction are presented in this paper. Considering of the effects on configuration of weld groups, the method of Instantaneous Center of Rotation are provided a more exact results of the numerical analysis.

  • PDF