• Title/Summary/Keyword: Allowable bearing capacity

Search Result 119, Processing Time 0.02 seconds

Evaluation on Structural Performance of Structural Insulated Panels in Wall Application (벽식 구조체 적용을 위한 구조용단열패널 성능 평가)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Lee, Cheol-Hee;Hwang, Sung-Wook;Jo, Hye-Jin;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • Structural insulated panels, which are structurally performed panels consisting of a plastic insulation bonded between two structural panel facings are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. By now, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to suggest fundamental reports such as racking resistance, axial capacity, transverse load capacity, and lintel load capacity for SIPs. Test results showed that maximum load was 44.3kN, allowable load was 14.7kN for racking resistance, and that maximum load was 137.6kN, allowable load was 37.4kN/m for axial compression capacity. For transverse load capacity, test results showed $10.3kN/m^2$ of maximum load, $3.4kN/m^2$ of allowable load. For lintel load capacity for SIPs dependent to lengths, allowable loads were 20.4kN for 600mm long lintel, 23.9kN for 1,200mm long lintel, 19.3kN for 1,800mm long lintel, and 2,400mm long lintel had 14.1kN of allowable load. In the near future, when the allowable load for wall application is established, SIPs is considered to substitute the existent post-and-lintel construction to bearing wall structure.

Experimental estimate of Nγ values and corresponding settlements for square footings on finite layer of sand

  • Dixit, Manish S.;Patil, Kailas A.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.363-377
    • /
    • 2013
  • Any structure constructed on the earth is supported by the underlying soil. Foundation is an interfacing element between superstructure and the underlying soil that transmits the loads supported by the foundation including its self weight. Foundation design requires evaluation of safe bearing capacity along with both immediate and long term settlements. Weak and compressible soils are subjected to problems related to bearing capacity and settlement. The conventional method of design of footing requires sufficient safety against failure and the settlement must be kept within the allowable limit. These requirements are dependent on the bearing capacity of soil. Thus, the estimation of load carrying capacity of footing is the most important step in the design of foundation. A number of theoretical approaches, in-situ tests and laboratory model tests are available to find out the bearing capacity of footings. The reliability of any theory can be demonstrated by comparing it with the experimental results. Results from laboratory model tests on square footings resting on sand are presented in this paper. The variation of bearing capacity of sand below a model plate footing of square shape with variation in size, depth and the effect of permissible settlement are evaluated. A steel tank of size $900mm{\times}1200mm{\times}1000mm$ is used for conducting model tests. Bearing capacity factor $N_{\gamma}$ is evaluated and is compared with Terzaghi, Meyerhof, Hansen and Vesic's $N_{\gamma}$ values. From the experimental investigations it is found that, as the depth of sand cushion below the footing ($D_{sc}$) increases, ultimate bearing capacity and settlement values show an increasing trend up to a certain depth of sand cushion.

Bearing capacity Calculation of Displacement in-situ Concrete Pile (비배토 현장타설 콘크리트 말뚝의 지지력 산정에 관한 연구)

  • 박종배;박태순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.65-84
    • /
    • 2000
  • Europe and US which have more restrictive regulations than Korea about the noise and vibration during construction are using Auger-cast Pile to reduce the problem relating with noise and vibration. However Auger-cast Pile has problems like difficult quality control and low bearing capacity. In Europe, Displacement in-situ concrete Pile has been used to sove that problems since 1990s, and Korea has performed the test construction in 1997 and it has been used as the real structural foundation since 1998. Test and real construction results verified that the allowable capacity of the pile(diameter = 410mm) is between 70 and 100ton. Though De Beer & Van Imps design method utilizing CPT result is used to calculate the bearing capacity of the Displacement in-situ Pile, Korea is dependant upon the SPT as the sounding test, so design method utilizing SPT result is necessary to promote the application of the pile. To find out reasonable design method using SPT result, rearing capacity of the pile constructed in sand and clay in Korea was calculated using Meyerhof, SPT-CPT translation method, Nordlund, Douglas and DM-7 method, and the calculation results were compared to the load test result. Analysis result shows that SPT-CPT translation method is more reliable than others and economical design can be possible because it considers efficiently the friction capacity of Displacement in-situ Pile.

  • PDF

A Study on Sub-base Composition Effect of Forest Road Using Geosynthetics for Passage of Large Logging Trucks (대형 목재운송차량 통행에 적합한 토목섬유 활용 임도 노반조성 효과분석)

  • Hwang, Jin-seong;Ji, Byoung-yun;Kweon, Hyeong-keun;Lee, Kwan-hee
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.3
    • /
    • pp.287-293
    • /
    • 2018
  • This study was carried out to provide surface bearing capacity reinforcement of forest road by sub-base facilities based on a soft ground use of geosynthetics to prevent the damage of the road surface passing heavy logging trucks and to pass smoothly heavy truck against growing timber harvesting. The analysis of the road surface bearing capacity as progressing time and the increase of the number of passage of heavy logging trucks were conducted experimental section of forest road on the soft ground in the Forest Technology and Management Research Center. As a result, it was found that the road surface bearing capacity were stabilized at CBR of 15% or more, the effect of reinforcement by type of geosynthetics showed no significant difference after the lapse of about 1 year. After reaching the passage of 300 times for the heavy logging trucks on the sub-base construction section, the settlements was stabilized below the allowable standard of 50 mm, road surface bearing capacity also improved to more than CBR 20% and there was no significant difference in the thickness of the sub-base. However, in the section where the sub-base is not constructed, it is found that the lack of surface bearing capacity with the settlements more than the allowable standard is not possible to pass the heavy logging trucks. Therefore, in order to reinforce the road surface bearing capacity of the soft ground for the passage of the heavy logging trucks, it is necessary to construct a sub-base of at least 0.2 m when using geosynthetics.

Modification of Bearing Capacity Formula Considering Seam Tensile Strength of Geotextile in Soft Ground (연약지반에 포설된 Geotextile 봉합인장강도를 고려한 지지력 수정방정식)

  • Kim, Sun-Hak;Chae, Yu-Mi;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.59-67
    • /
    • 2019
  • With the increasing use of geotextile mats in dredging and reclaiming work and coastal construction, the assessment of bearing capacity in soft ground has become an important evaluation index for negligent accidents. The review of the allowable bearing capacity of soft ground consisting of inhomogeneous layers by laying geotextile mats and sand mat layers for soft ground improvement is generally compared with the equation of Meyerhof (1974) and Yamanouchi (1985). Mayerhof formula results in economic loss due to underestimation of bearing capacity, and Yamanouchi (1985) formula does not take into account negligent accidents for punching shear failure, so rather high bearing capacity is evaluated. It is considered that economic feasibility and stability will be ensured by proposing a modified formula to calculate the appropriate bearing capacity by applying the seam tensile strength of the geotextile mat to the design standard of soft ground improvement.

Development of Design Method of Disconnected Piled Raft Foundation System (기초분리말뚝 공법의 설계기법 개발)

  • Choi, Jung-In;Min, Ki-Hoon;Kim, Sung-Ho;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.691-699
    • /
    • 2008
  • In the design of a foundation, settlement of the foundation may exceed allowable design criteria even with a competent bearing stratum. In such a case, a piled-raft foundation system may be adopted using piles as settlement reducing component. In this paper, Disconnected Piled Raft Foundation (DPRF) system, which installs disconnected piles underneath the raft and uses the piles as ground reinforcements, is studied as a cost effective design method against the classical piled-raft foundation system. To this end, large size loading tests were carried out on weathered ground changing area replacement ratio and length of piles. The results indicated that the settlement of the reinforced ground was reduced by 34~87% and the allowable bearing pressure increased by 70% on average from those of the unreinforced original ground, respectively. The correlating formula between the area replacement ratio and the load bearing ratio of piles were derived from the test results and numerical analysis. From the correlation, a design method determining the size and the quantity of the disconnected piles to enhance the bearing capacity of original ground to the desired value was proposed based on one inch settlement criteria.

  • PDF

A Case Study on the Design of Drilled Shaft on Soft Ground in Vietnam (베트남 연약지반에서의 현장타설말뚝 설계 사례)

  • Seo, Won-Seok;Cho, Sung-Han;Choi, Ki-Byung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.591-604
    • /
    • 2008
  • In this study, two design examples of drilled shafts on soft ground in Ho-Chi-Minh City, Vietnam are introduced. One is for a 27-story apartment and the other is for a Arch bridge over Saigon river. Unlikely the normal cases in Korea, all of the bored pile foundations are supposed to be placed on soil layers. Therefore, skin friction between pile and ground is the most crucial design parameter. Three methods using SPT N value of sandy soil -Korean Road Bridge Code(1996), Reese and Wright (1977), and O'Neill and Reese (1988)- were adopted to obtain an ultimate axial bearing capacity. In order to verify the calculated bearing capacity, 3 sets of static load test and a Osterberg Cell test were performed at an apartment site and a bridge site respectively. LRFD (Load Resistance Factored Design) method was compared with ASD (Allowable Stress Design) method. On application of ASD method, safety factor for skin friction was adopted as 2 or 3 while safety factor for end bearing was 3. The design bearing capacities from ASD method matched well with those from LRFD method when safety factor for skin friction was adopted as 2.

  • PDF

A Study on Bearing Capacity Reinforcement for PHC Pile Foundation Using Post-grouting (그라우팅 기법을 활용한 PHC 파일 기초의 지지력 증강 효과 연구)

  • Yoo, Min-Taek;Lee, Su-Hyung;Kim, Seok-Jung;Choi, Yeong-Tae;Park, Jeongjun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.17-25
    • /
    • 2017
  • In this research, post grouting methods were applied on PHC piles, and static load tests were conducted to confirm the effect of post grouting on bearing capacity enhancement of PHC piles. Grouting pressures of 1.9 MPa and 3.5 MPa were applied, and bearing capacities of grouted piles were compared with that of non-grouted pile. From the static load test results, the bearing capacities of grouted piles were about 3 times higher than that of non-grouted pile. In addition, the design efficiency (allowable bearing capacity/nominal bearing capacity) increased from 32% to 97% after post grouting, and the axial stiffness of piles also increased by about 1.3 times per grouting pressure.

Seam Efficiency of Geotextile and Verification of Allowable Bearing Capacity of Soft Ground (토목섬유 봉합효율과 연약지반 허용지지력 현장검증)

  • Cho, Dae-Sung;Chae, Yu-Mi;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.7
    • /
    • pp.25-34
    • /
    • 2021
  • Since the dredging reclaimed land consisting of soft ground is very weak in support, the difficult and complex factors should be considered in the design to calculate accurate bearing capacity of soft ground. Recently, various reinforcement construction methods of soft ground have been designed for dredged landfills, but the stabilities are predicted by calculating conventional Meyerhof (1974) equation for trafficability in soft ground. Conventional equations increase economic costs by underestimating bearing capacity of weak ground in order to ensure constructive safety, so a modified equation has been proposed from the literature. The paper attempts to experiment and compute important factors, such as stitching fiber and seam tensile strength of geotextiles, that are not theoretically considered and can be identified in the field. In addition, The evaluation of the bearing capacity of the modified equation is verified to be stable for trafficability through the plate bearing test performed on site.