• Title/Summary/Keyword: Allowable Vibration

Search Result 197, Processing Time 0.027 seconds

Development of Vibration Prediction Program of Gas Pipeline by Construction Vibration (건설진동에 의한 가스배관의 진동예측 프로그램 개발)

  • Jeong S. Y.;Hong S. K.;Kim J. H.;Koh J. P.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.30-35
    • /
    • 2001
  • Presently, working gas pipelines are being subjected to the influence of construction vibration. Especially on subway and road construction, gas pipelines are being influenced to construction vibration caused by use of construction equipment, passage of a large-sized vehicle and blasting. Buried gas pipelines are subjected to the influence of vibration caused by blast in the vicinity of pipeline, exposed gas pipelines are subjected to the influence of vehicle vibration. Therefore, in the study, it is developed to vibration prediction program of gas pipeline by analyzing measured construction vibration. This program is able to predict vibration of gas pipeline according to field conditions by using the results of structural finite element analysis and empirical equation by reliability analysis. And, this program contains the database of construction vibration. Additionally, this program is able to compute estimated blast vibration equation using measured blast vibration data in the field and to form graph of allowable charging gunpowder per delayed-action with the change of blast velocity. Therefore, field workers are able to predict construction vibration around gas pipeline and estimate safety of gas pipeline.

  • PDF

Establishment of a Safe Blasting Guideline for Pit Slopes in Pasir Coal Mine (파시르탄광의 사면안전을 위한 발파지침 수립 연구)

  • Choi, Byung-Hee;Ryu, Chang-Ha;SunWoo, Coon;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.418-426
    • /
    • 2008
  • A surface blasting method with a single tree face is currently used in Pasir Coal Mine in Indonesia. The single free face is usually the ground surface. This kind of blasting method is easy to use but inevitably causes enormous ground vibrations, which, in turn, can affect the stability of the slopes comprising the various boundaries of the open pit mine. In this regard, we decided to make a specific blasting guideline for the control of found vibrations to ensure the safety of the pit slopes and waste dumps of the mine. Firstly, we derived a prediction equation for the ground vibration levels that could be occurred during blasting in the pits. Then, we set the allowable levels of ground vibrations for the pit slopes and waste dumps as peak particle velocities of 120mm/s and 60mm/s, respectively. From the prediction equation and allowable levels, safe scaled distances were established for field use. The blast design equations for the pit slopes and waste dumps were $D_s{\geq}5\;and\;D_S{\geq}10$ respectively. We also provide several standard blasting patterns for the hole depths of $3.3{sim}8.8m$.

A Study on the Characteristics of Noise in Small Boats (소형 선박의 소음 특성에 관한 연구)

  • 최한규;신형일;양보석;이유원;김광홍
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.134-142
    • /
    • 2003
  • Most of the vibration and noise generating in small boats come from shipboard machinery such as main engine, generator and auxiliary machinery etc. In order to build up the comfortable environment for the crew and to reduce the ambient noise, and provide basic materials for reasoning selection application, the design under allowable vibration & noise conditions and the examination of vibration condition of the new ships, this paper researches the frequency spectrum and order analysis of vibration and noise. The obtained results are summarized as follows : Through comparing the small boat internal noise with the regulation of IMO and DNV, it revealed that the noise level of main engine room accords with the standard, and the noise of other places are beyond the values. In this paper, two boats are analyzed, which are same type, same size and power, but the main engines noise of them is different. In order to search the noise source, the noise of main engine room and relative parts are measured. The third order of measured points is dominant in frequency domain by the order analysis.

Estimation of Stiffness Limit for Railway Bridge Vibration Serviceability (진동사용성을 고려한 철도교량구조물의 강성한계 분석)

  • Jeon, Bub-Gyu;Kim, Nam-Sik;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.5
    • /
    • pp.489-498
    • /
    • 2008
  • In general, deflection limit criteria of bridge design specifications have been considered based on static serviceability and structural stability. Dynamic serviceability induced from bridge vibration actually has not been included in the criteria. Thus, it is necessary for deflection limit to be considered in order to check dynamic service- ability on bridge vibration. In this study, The allowable displacement of Korea Railway Bridge Design Specifications is compared to the frequency domain comfort limit and analyzed france code and japanese code. Korea Railway Bridge Design Specifications is regulated based on the train speed. Such is because the vibration time duration is partly considered. but this criteria is not satisfied with comfort limit. and, it is estimated to be capable to provide deflection limit considering dynamic serviceability. In order to evaluate the dynamic serviceability of various types of railway bridges in current public were selected and their dynamic signals were measured. and the result of the bridge-train interaction analysis according to the changes in bridge stiffness was compared to the comfort limit to suggest the stiff-ness limit to the dynamic serviceability, which should conveniently be applied at the field.

Development of Vibration Absorption Device for the Transportation-Trailer System (III) - Leaf Spring Suspension Device - (수송 트레일러의 충격흡수장치 개발(III) -평판 스프링 현가장치-)

  • Hong, J.H.;Park, W.Y.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.224-229
    • /
    • 2008
  • This study was aimed to minimize the impact force and vibration transmitted to the transporting materials from the trailer and wheel shaft by installing the leaf spring suspension device at the space between the wheel shaft and frame of power tiller trailer. The developed trailer equipped with leaf spring suspension device was compared to the existing trailer without suspension device, in order to identify the vibration absorption effect of the leaf spring. The results of this study could be summarized as follows; (1) The length and the maximum bending amount of the leaf spring were designed as 1,000 mm and 42 mm, respectively, considering the possible space for installing at below the trailer. When 4 leaf springs were installed on both wheel shafts, the allowable maximum load was identified as 9,418 N. (2) The average vibration accelerations for the frequency less than 20 Hz, where the severe transporting loss could be represented, were $0.017\;m/s^2$ and $0.133\;m/s^2$ for the developed and the existing trailer, respectively, showing the vibration absorption effect of about 87%. And the average vibration accelerations on the driver's seat for the frequency less than 20 Hz were $0.01\;m/s^2$ and $0.20\;m/s^2$ for the developed and the existing trailer, respectively, which showed the similar vibration absorption effect. (3) The change of the average vibration accelerations for the frequency from 20 Hz to 80 Hz showed the similar tendency with the result for the frequency less than 20 Hz, but the effect for developed trailer was reduced slightly. And the effect of vibration absorption for the above 80 Hz was reduced highly. However, by installing the leaf spring suspension device at the trailer, the low frequency below 40 Hz, which could affect on transporting loss severely, could be reduced highly. (4) The maximum vibration acceleration for the frequency less than 20 Hz were $0.027\;m/s^2$ and $1.267\;m/s^2$ for the developed and the existing trailer, respectively. And the change of maximum acceleration between 20 Hz and 120 Hz was showed similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

A Study on the Nano-Plasma Rock Breaking Blasting Method Using Rapidly Expansive Metal Mixture (급팽창 금속혼합물을 이용한 나노프라즈마 바위 파쇄공법에 관한 연구)

  • Kim Sung-Kook;Ahn Myung-Seog;Cho Myung-Chan
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.57-74
    • /
    • 2005
  • In the past, explosives like dynamite was used to blast rock. However, today it is difficult to use explosives in urban blastinglike excavation for subway, building, and housing land. According to Korea Department of Construction and Transportation's proposal for blasting design manual and test blasting, from TYPE I blasting to TYPE IV blasting are recommended when we determine 0.3cm/sec(centisec) as a maximum allowable ground vibration with a distance between $25m\~120m$ from structures. This article was written to introduce one of TYPE I (reck blasting within 25m from structures) blasting method, Nano-Plasma blasting method. When Nano-Plasma blasting method is applied in urban blasting job, ground vibration (15m away from blasting point) is expected 0.1cm/sec, which is only half of a ground vibration when low ground vibration blasting method is applied. By this unique characteristic, Nano-Plasma blasting method is epochal urban blasting technique.

Vibration Characteristic of Full Weight Case Maglev Vehicle Running at Switching System (만차 조건 자기부상열차의 분기기 구간 주행 시 진동 특성)

  • Shin, Hyeon-Jae;Lee, Jong-Min;Kim, Chang-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.678-684
    • /
    • 2011
  • In 2013, Korea will become the world's second country to operate the urban Maglev system with the inauguration of demonstration line at Incheon International Airport. A prototype Maglev is under the test at KIMM's(Korea Institute of Machinery & Materials, Daejeon) track. This Maglev is an EMS(Electromagnetic suspension)-type vehicle of controlled $8{\pm}3mm$ air gap. The air gap between electromagnet and the guiderail in an EMS-type Maglev must be maintained within an allowable deviation by controlling the magnet. The air gap response is strongly dependent on the structural characteristics of the elevated guideway. For this reason, the interaction between the vehicle with electromagnets and the elevated guideway must be understood to ensure safe running. The purpose of this paper is to compare vibration characteristics of the vehicle on the switching system and other sections when the full weight condition of urban maglev vehicle that 26.5 tons per car(empty car weight 19 tons + passenger condition 7.5 tons), is applied. Through such results, Maglev vehicles and switching system can be established and the levitation stability can be improved.

  • PDF

Bearing capacity Calculation of Displacement in-situ Concrete Pile (비배토 현장타설 콘크리트 말뚝의 지지력 산정에 관한 연구)

  • 박종배;박태순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.65-84
    • /
    • 2000
  • Europe and US which have more restrictive regulations than Korea about the noise and vibration during construction are using Auger-cast Pile to reduce the problem relating with noise and vibration. However Auger-cast Pile has problems like difficult quality control and low bearing capacity. In Europe, Displacement in-situ concrete Pile has been used to sove that problems since 1990s, and Korea has performed the test construction in 1997 and it has been used as the real structural foundation since 1998. Test and real construction results verified that the allowable capacity of the pile(diameter = 410mm) is between 70 and 100ton. Though De Beer & Van Imps design method utilizing CPT result is used to calculate the bearing capacity of the Displacement in-situ Pile, Korea is dependant upon the SPT as the sounding test, so design method utilizing SPT result is necessary to promote the application of the pile. To find out reasonable design method using SPT result, rearing capacity of the pile constructed in sand and clay in Korea was calculated using Meyerhof, SPT-CPT translation method, Nordlund, Douglas and DM-7 method, and the calculation results were compared to the load test result. Analysis result shows that SPT-CPT translation method is more reliable than others and economical design can be possible because it considers efficiently the friction capacity of Displacement in-situ Pile.

  • PDF

In-situ measurement of railway-traffic induced vibrations nearby the liquid-storage tank

  • Goktepe, Fatih;Kuyuk, Huseyin S.;Celebi, Erkan
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.583-589
    • /
    • 2017
  • In this study, result of a field investigation of railway traffic-induced vibrations is provided to examine acceptability levels of ground vibration and to evaluate the serviceability of a liquid-storage tank. Free field attenuation of the amplitudes as a function of distance is derived by six accelerometers and compared with a well-known half-space Bornitz's analytical solution which considers the loss of the amplitude of waves due to geometrical damping and material damping of Rayleigh. Bornitz's solution tends to overlap vertical free field vibration compared with in-situ measured records. The vibrations of the liquid-storage tank were compared with the USA, Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations and with the criteria in DIN 4150-3 German standard. Comparing the thresholds stated in DIN 4150-3, absolute peak particle velocities are within the safe limits, however according to FTA velocity level at the top of the water tank exceeds the allowable limits. Furthermore, it is intended to indicate experimentally the effect of the kinematic interaction caused by the foundation of the structure on the free-field vibrations.

The Construction of Seoul Subway Line 3 and 4

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.18 no.3
    • /
    • pp.1-20
    • /
    • 1985
  • The traffic congestion of Seoul city has been one of the most serious problems to be settled since the advent of 1970s. As a means to mitigate traffic mess, the authority concerned launched the construction of subway line 3 and 4 in 1980. The two Subway lines slated for completion by 1985 cross each other and run north-south direction, passing through the metropolitan area of Seoul city fraught with high-rise edifices and large-scale shopping centers, and, in order to reduce blasting vibration, NATM was executed for a distance of 10 Km, instead of ASSM previously employed when subway line 1 and 2 were constructed. Tunnel blastings were implemented, preceded by classifying the rocks at construction area into five categories, namely, hard rock, semi-hard rock, weak rock weathered rock and silt and by calculating their respective specific charges through standard test blastings, by employing the pre-splitting and smooth blasting with drilling patterns of burn cut type, so as not to cause damages to surface structures. Most of explosives used were the slurry of low specific gravity and low velocity, and the firings executed by the use of milli-second detonators. Empiric formula were also formulated to check blasting vibrations, based on the vibration allowable values of West Germany standard, for the application to vulnerable construction zones. Should the two lines be placed for public service in 1985, about 40% of the total traffic population of Seoul city amounting to 15 million as of 1984 is estimated to be carried by subway with no difficulties.

  • PDF