• Title/Summary/Keyword: Allophanate

Search Result 12, Processing Time 0.025 seconds

Reaction Kinetics between a Cycloaliphatic Diisocyanate(H12MDI) and n-Hexanol (환상지방족 Isocyanate(H12MDI)와 n-Hexanol의 반응속도론)

  • Kim, Taehoon;park, Sungyurb;Park, Sunghoon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1079-1084
    • /
    • 1998
  • Reaction kinetics between 4,4'-dihexyl methane diisocyanate($H_{12}MDI$) and n-hexanol in toluene with dibutyltin dilaurate(DBTDL) as catalyst was studied by experimental measurements and mathematical modeling. Experiments were carried out at various temperatures, catalyst concentrations and [NCO]/[OH] ratios, and the reaction kinetics were described by two second-order reactions, the one between NCO and OH leading to urethane and the other between urethane and NCO leading to allophanate. The rate constants were estimated by the Runge-Kutta 4th-order method. Experiments and mathematical simulations showed a good agreement for various experimental conditions. The [allophanate]/[urethane] ratios at 90% conversion of initial NCO were estimated to be over 20% for most conditions employed in the present study, indicating that allophanate formation might significantly affect the properties of urethane polymers.

  • PDF

Physical Properties of High-Solid Coatings with Acrylic Resins Containing Acetoacetoxy Group and Allophanate-Trimer (Acetoacetoxy기 함유 아크릴수지와 Allophanate-Trimer에 의한 하이솔리드 도료의 도막물성)

  • Jo Hye-Jin;Shim Il-Woo;Park Hong-Soo;Kim Seung-Jin;Kim Seong-Kil
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.230-237
    • /
    • 2006
  • Copolymers(HSA-98-20, HSA-98-0, HSA-98+20) which we acrylic resin containing 80% solid content were synthesized by the reaction of monomers, including methyl methacrylate, n-butyl acrylate, and 2-hydroxyethyl acrylate with a functional monomer, acetoacetoxyethyl methacrylate (AAEM), which nay give improvements in cross-linking density and physical properties of films. The physical properties of prepared acrylic resins, containing AAEM, are as follows viscosities, $1420\sim5760cps$ ; number average molecular weight, $2080\sim2300g/mol$; polydispersity index, $2.07\sim2.19$ ; and conversions, $88\sim93%$. In the next step, high-solid coatings (HSA-98-20C, HSA-98-0C, HSA-98+20C) were prepared by the curing reaction between acrylic resins containing 80% solid content and isocyanate at room temperature. Various properties were examined on the film coated with the prepared high-solid coatings. The introduction of AAEM to the coatings enhanced the abrasion resistance and solvent resistance, which indicated the possible use of high- solid coatings for top-coating materials of automobile. Since the curing by viscoelastic measurement occurred in sequence of HSA-98+20C > HSA-98-0C > HSA-98-20C, it was concluded that the curing rates became faster with incresing $T_g$ values.

Effect of Polyisocyanate Hardener on Waterborne Polyurethane Adhesive Containing Different Amounts of Ionic Groups

  • Rahman Mohammad Mizanur;Kim Han-Do
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.634-639
    • /
    • 2006
  • Waterborne polyurethane (WBPU) adhesive with varying amounts of dimethylol propionic acid (DMPA) was synthesized by prepolymer process and blended with polyisocyanate hardener. The mean particle size of the WBPU dispersion decreased with increasing DMPA content. $^1H$ NMR spectroscopy confirmed the formation of allophanate bonds and biuret bonds due to the reaction of hardener NCO with urethane/urea groups. The optimum NCO content with the greatest adhesive strength was dependent on the total content of urethane/urea groups in the WBPU molecules. The optimum NCO content increased with increasing number of urethane groups (DMPA content). The adhesion strength of WBPU adhesives was maximized at a molar ratio of hardener NCO to urethane/urea of about 0.28.

Effect of Isocyanate Index on the Properties of Rigid Polyurethane Foams Blown by HFC 365mfc

  • Kim, Sung-Hee;Kim, Byung-Kyu;Lim, Ho
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.467-472
    • /
    • 2008
  • Rigid polyurethane foams (RPUFs) were fabricated from crude MDI (CMDI) and polypropylene glycols (PPGs) of various isocyanate indices with a physical blowing agent (HFC 365mfc). There was a tendency for the gel time to decrease and the tack-free time to increase with increasing index value. With increasing index value the foam density and compression strength decreased and the glass transition temperature, dimension stability and thermal insulation increased, while the cell size and closed cell content were virtually unchanged. Allophanate crosslinks and condensation reactions between the isocyanate groups, which are favored with a high index value, exerted significant effects on the properties of RPUFs.

Effects of Amine Catalysts on Structure of Polyurethane Foams

  • Furukawa, Mutsuhisa;Takamatsu, Katsuhiro
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.285-291
    • /
    • 1999
  • Effects of catalysts on network structure, hard segment length and distribution of polyurethane foams in the absence of catalysts were investigated. CFC free all MDI-based poly urethane foams were prepared from poly(ethylene adipate)glycol, 4,4'-diphenylmethane diisocyanate, and water. Amino catalysts used were 1,4-diazabicyclo[2,2,2]octane(DABCO), N, N,N',N'-tetramethyl--hexane-1,6-diamine(MR), bis(2-methylamino ethyl)ether(ET), 1,8-diazabicyclo-[5,4,0]-undecene-7(DBU). Dibutyltindilaurate(DBTL) as control was also used. Hard segment components of polyurethane foams were obtained by a selective degradation of polyester chains with 0.01N KOH-methanol solution. The PUFs with DBU catalyst contained more amount of isocyanurate components than other PUFs. On the other hand, the PUFs with ET, MR, DBTL catalysts contained more amount of allophanate and biuret component than the other PUFs.

  • PDF

Synthesis and Characteristics of Highly Oil-absorptive Expanded Polyurethane (고흡유성 발포 폴리우레탄의 합성과 특성)

  • Lee, Yong-Hun;Kim, Wook;Kim, Won-Ho
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.149-158
    • /
    • 2000
  • Oil-absorptive expanded polyurethane (EPU) was prepared with a lypophilic polyol, polypropyleneglycol (PPG) as the soft segment, and toluenediisocyanate (TDI) and $H_2O$ as the hard segment. PPGs haying various average molecular weights ((equation omitted) : 1000, 2000, 3000) were employed to investigate that the soft segment content was consequent on the oil-absorptivity and the mechanical properties of the EPUs. As (equation omitted) of PPG was decreased from 3000 to 1000, the oil-absorptivity and the tensile strength of the EPUs increased from 1460 to 3010% and from 0.26 to 0.55 $kg_{f}$ /$cm^2$ respectively. As the hard segment content ratio, ${\gamma}$ ([NCO]/[OH]) was increased from 1.0 to 1.2, the tensile strength of the EPUs increased from 0.56 to 0.95 $kg_{f}$ /$cm^2$, due to the formation of allophanate and/or biuret bondings. However, as the surfactant (S-A) content was increased from 1.0 to 2.5 pbw, the oil-absorptivity was decreased from 3634 to 3312%, due to the formation of closed cell structures.

  • PDF

Investigation of Fluorescent Shape Memory Polyurethanes Grafted with Various Dyes

  • Chung, Yong-Chan;Choi, Jae-Won;Lee, Seung-Hwan;Chun, Byoung-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2988-2996
    • /
    • 2011
  • Shape memory polyurethane (SMPU), grafted with a fluorescent dye (Rhodamine, Mehylene violet, or Fluorescein) through an allophanate linking, was tested for the fluorescence and the shape recovery effect. The main chain of SMPU was composed of 4,4'-methylenebis(phenylisocyanate) (MDI), poly(tetramethyleneglycol) (PTMG), and 1,4-butanediol (BD), and a fluorescent dye was connected through a second MDI linked to the carbamate moiety of the main chain. Three series of SMPU, differing according to their dye content, were prepared to compare their shape recovery and fluorescence properties. In tensile mechanical property, maximum stress increased up to 350% compared to the linear SMPU, and strain remained above 2000%. Shape recovery went to as high as 97%, and remained almost same after repetitive shape recovery test cycles. Finally, the fluorescence emission of SMPU was demonstrated in the luminescence spectrum and fluorescent light emission pictures. In addition, the response of SMPU to external stimuli such as metal ions was investigated.

Study on Type of Different Polyols for Physical Properties of Polyurethane Foam Under Sea Water (해수에서 폴리올 종류가 폴리우레탄 폼의 물성에 미치는 영향)

  • Kim, Sang-Bum
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.158-163
    • /
    • 2011
  • Rigid polyurethane foam (PUF) was synthesized with different contents of aliphatic polyester polyol, aromatic polyester polyol and aliphatic polyether polyol to know change of properties under sea water. UTM(universal testing machine), DSC(differential scanning calorimetry), hardness meter and FT-IR(Fourier transform spectroscopy) were used to study the PUF`s physical properties under sea water. Compressive strength and hardness of PUF decreased with increasing the content of aromatic polyester polyol under sea water as aging. According to the results of IR spectral analysis, reduction of urethane and urea peak was found and allophanate and biuret peak increased. Although glass transition temperature of PUF increased, mechanical properties of PUF decreased under sea water, because PUF gets brittle when crosslink density increase.

A Study on Reaction Kinetics of PTMG/TDI Prepolymer with MOCA by Non-Isothermal DSC

  • Ahn, WonSool;Eom, Seong-Ho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.92-97
    • /
    • 2015
  • A study on reaction kinetics for a PTMG/TDI prepolymer with 2,2'-dichloro-4,4'-methylenedianiline (MOCA), of which formulations may be generally used for fabricating high performance polyurethane elastomers, was peformed using non-isothermal differential scanning calorimetry (DSC). A number of thermograms were obtained at several constant heating rates, and analysed using Flynn-Wall-Ozawa (FWO) isoconversional method for activation energy, $E_a$ and extended-Avrami equation for reaction order, n. Urea formation reaction of the present system was observed to occur through the simple exothermic reaction process in the temperature range of $100{\sim}130^{\circ}C$ for the heating rate of $3{\sim}7^{\circ}C/min$. and could be well-fitted with generalized sigmoid function. Though activation energy was nearly constant as $53.0{\pm}0.5kJ/mol$, it tended to increase a little at initial stage, but it decreases at later stage by the transformation into diffusion-controlled reaction due to the increased viscosity. Reaction order was evaluated as about 2.8, which was somewhat higher than the generally well-known $2^{nd}$ order values for the various urea reactions. Both the reaction order and reaction rate explicitly increased with temperature, which was considered as the indication of occurring the side reactions such as allophanate or biuret formation.