• 제목/요약/키워드: Allocation of Communication Resources

Search Result 159, Processing Time 0.027 seconds

Migration and Energy Aware Network Traffic Prediction Method Based on LSTM in NFV Environment

  • Ying Hu;Liang Zhu;Jianwei Zhang;Zengyu Cai;Jihui Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.896-915
    • /
    • 2023
  • The network function virtualization (NFV) uses virtualization technology to separate software from hardware. One of the most important challenges of NFV is the resource management of virtual network functions (VNFs). According to the dynamic nature of NFV, the resource allocation of VNFs must be changed to adapt to the variations of incoming network traffic. However, the significant delay may be happened because of the reallocation of resources. In order to balance the performance between delay and quality of service, this paper firstly made a compromise between VNF migration and energy consumption. Then, the long short-term memory (LSTM) was utilized to forecast network traffic. Also, the asymmetric loss function for LSTM (LO-LSTM) was proposed to increase the predicted value to a certain extent. Finally, an experiment was conducted to evaluate the performance of LO-LSTM. The results demonstrated that the proposed LO-LSTM can not only reduce migration times, but also make the energy consumption increment within an acceptable range.

Modeling and Analysis of Burst Switching for Wireless Packet Data (무선 패킷 데이터를 위한 Burst switching의 모델링 및 분석)

  • Park, Kyoung-In;Lee, Chae Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.2
    • /
    • pp.139-146
    • /
    • 2002
  • The third generation mobile communication needs to provide multimedia service with increased data rates. Thus an efficient allocation of radio and network resources is very important. This paper models the 'burst switching' as an efficient radio resource allocation scheme and the performance is compared to the circuit and packet switching. In burst switching, radio resource is allocated to a call for the duration of data bursts rather than an entire session or a single packet as in the case of circuit and packet switching. After a stream of data burst, if a packet does not arrive during timer2 value ($\tau_{2}$), the channel of physical layer is released and the call stays in suspended state. Again if a packet does not arrive for timerl value ($\tau_{1}$) in the suspended state, the upper layer is also released. Thus the two timer values to minimize the sum of access delay and queuing delay need to be determined. In this paper, we focus on the decision of $\tau_{2}$ which minimizes the access and queueing delay with the assumption that traffic arrivals follow Poison process. The simulation, however, is performed with Pareto distribution which well describes the bursty traffic. The computational results show that the delay and the packet loss probability by the burst switching is dramatically reduced compared to the packet switching.

Implications of Incentive Auction : Focusing on key issues in U.S.

  • Kim, Joohyun;Kim, Sang-Yong;Yeo, Jaehyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1352-1361
    • /
    • 2014
  • The Federal Communications Commission (FCC), which regulates interstate and international communications in the United States, has established a plan to allocate high demand spectrum to the usage of mobile communication by inducing voluntary relinquishment from broadcasters. This plan was introduced by the National Broadband Plan as an incentive auction in 2010. The FCC suggested the Notice of Proposed Rulemaking (NPRM) in 2012 and issued Report and Order (R&O) on May 2014 regarding the overall rules of incentive auctions expected to be implemented in mid-2015. The incentive auction attracts the attention of many countries because this policy suggests a novel approach regarding the alteration of use from an inefficient usage to an efficient usage in limited spectrum resources. In this paper, we define the key issues in order for implementation of incentive auction. Since the incentive auction is a highly complicated process compared to previous allocation procedures, a careful review of the incentive auction regarding whether this spectrum policy can be introduced is required. In this paper, we describe the detailed procedure of the incentive auction and present policy considerations for the introduction of the incentive auction.

Contract Theory Based Cooperative Spectrum Sharing with Joint Power and Bandwidth Optimization

  • Lu, Weidang;He, Chenxin;Lin, Yuanrong;Peng, Hong;Liu, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5803-5819
    • /
    • 2017
  • In this paper, we proposed a contract theory based cooperative spectrum sharing scheme with joint power and bandwidth optimization under asymmetric information, where the primary user (PU) does not know the secondary users' (SUs) private information. To improve performance, PU needs to provide incentives to stimulate nearby SUs to help forward its signal. By using contract theory, PU and SUs' negotiations are modeled as a labor market. PU and SUs act as the employer and employees, respectively. Specifically, SUs provide labor (i.e. the relay power, which can be used for forwarding PU's signal) in exchange for the reward (i.e. the spectrum access bandwidth which can be used for transmitting their own signals). PU needs to overcome a challenge how to balance the relationship between contributions and incentives for the SUs. We study the optimal contract design which consists of relay power and spectrum access bandwidth allocation. We show that the most efficient SUs will be hired by the PU to attend the cooperative communication. PU can achieve the same maximum utility as in the symmetric information scenario. Simulation results confirm that the utility of PU is significantly enhanced with our proposed cooperative spectrum sharing scheme.

A SoC Design Synthesis System for High Performance Vehicles (고성능 차량용 SoC 설계 합성 시스템)

  • Chang, Jeong-Uk;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.181-187
    • /
    • 2020
  • In this paper, we proposed a register allocation algorithm and resource allocation algorithm in the high level synthesis process for the SoC design synthesis system of high performance vehicles We have analyzed to the operator characteristics and structure of datapath in the most important high-level synthesis. We also introduced the concept of virtual operator for the scheduling of multi-cycle operations. Thus, we demonstrated the complexity to implement a multi-cycle operation of the operator, regardless of the type of operation that can be applied for commonly use in the resources allocation algorithm. The algorithm assigns the functional operators so that the number of connecting signal lines which are repeatedly used between the operators would be minimum. This algorithm provides regional graphs with priority depending on connected structure when the registers are allocated. The registers with connecting structure are allocated to the maximum cluster which is generated by the minimum cluster partition algorithm. Also, it minimize the connecting structure by removing the duplicate inputs for the multiplexor in connecting structure and arranging the inputs for the multiplexor which is connected to the operators. In order to evaluate the scheduling performance of the described algorithm, we demonstrate the utility of the proposed algorithm by executing scheduling on the fifth digital wave filter, a standard bench mark model.

Resource Allocation Scheme for Multiple Device-to-Device Communications in a Multicell Network (다중 셀 네트워크에서 다중 D2D 통신 자원할당 기법)

  • Kim, Hyeon-Min;Kang, Gil-Mo;Shin, Oh-Soon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.18-25
    • /
    • 2016
  • In D2D communications underlaying a multicell network, it is of primary importance to ensure coexistence of cellular links and D2D links with minimal interference. Therefore, resource allocation scheme for D2D links should be designed to limit the interference between cellular links and D2D links. In this paper, we propose an effective resource allocation scheme for multiple D2D links which share the uplink spectrum resource with cellular users in a multicell network. Under the assumption that the locations of users are known to the base station, the proposed scheme allocates cellular resources to D2D links, such that the interference between a cellular link and multiple D2D links is minimized. In particular, we compute two constants from the path loss model and then use the constants to protect both cellular and D2D links. Simulation results are provided to verify the performance of the proposed scheme.

A Power Control-Based MF-TDMA Resource Allocation Scheme for Next Generation Military Satellite Communication Systems (차기 군 위성통신망 체계에서 이기종 단말 운용을 고려한 전력제어 기반 MF-TDMA 자원할당 기법)

  • Woo, Soon;Park, Hyung-Won;Lee, Ho-Sub;Yoo, Youn-Sang;Jung, Byung-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1138-1147
    • /
    • 2012
  • In this paper, an efficient power control based MF-TDMA resource allocation scheme is proposed for next generation military satellite communication systems. The proposed scheme has the flexibility is used to support heterogeneous terminals with differ in transmission capabilities. The method can be divided into two parts : burst size calculation and burst structure determination. At first, we estimate the link budget taken into account a dynamic satellite link state variation. Then, applicable ACM level and burst size is chosen. In burst structure determination phase, we reorganize the burst structure in time-frequency domain by controlling limited power, bandwidth, time resources. In particular, we compensate the power spectral density among different terminals to integrate them in same transponder, Furthermore, we increase the packing efficiency by controlling the ACM level of the burst in applicable power spectral density range. Simulation results show that the method increase the spectral efficiency and burst packing efficiency. In addition, slot allocation rejection ratio is successfully reduced.

On the Handling of Node Failures: Energy-Efficient Job Allocation Algorithm for Real-time Sensor Networks

  • Karimi, Hamid;Kargahi, Mehdi;Yazdani, Nasser
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.413-434
    • /
    • 2010
  • Wireless sensor networks are usually characterized by dense deployment of energy constrained nodes. Due to the usage of a large number of sensor nodes in uncontrolled hostile or harsh environments, node failure is a common event in these systems. Another common reason for node failure is the exhaustion of their energy resources and node inactivation. Such failures can have adverse effects on the quality of the real-time services in Wireless Sensor Networks (WSNs). To avoid such degradations, it is necessary that the failures be recovered in a proper manner to sustain network operation. In this paper we present a dynamic Energy efficient Real-Time Job Allocation (ERTJA) algorithm for handling node failures in a cluster of sensor nodes with the consideration of communication energy and time overheads besides the nodes' characteristics. ERTJA relies on the computation power of cluster members for handling a node failure. It also tries to minimize the energy consumption of the cluster by minimum activation of the sleeping nodes. The resulting system can then guarantee the Quality of Service (QoS) of the cluster application. Further, when the number of sleeping nodes is limited, the proposed algorithm uses the idle times of the active nodes to engage a graceful QoS degradation in the cluster. Simulation results show significant performance improvements of ERTJA in terms of the energy conservation and the probability of meeting deadlines compared with the other studied algorithms.

Mixed-Integer Programming based Techniques for Resource Allocation in Underlay Cognitive Radio Networks: A Survey

  • Alfa, Attahiru S.;Maharaj, B.T.;Lall, Shruti;Pal, Sougata
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.744-761
    • /
    • 2016
  • For about the past decade and a half research efforts into cognitive radio networks (CRNs) have increased dramatically. This is because CRN is recognized as a technology that has the potential to squeeze the most out of the existing spectrum and hence virtually increase the effective capacity of a wireless communication system. The resulting increased capacity is still a limited resource and its optimal allocation is a critical requirement in order to realize its full benefits. Allocating these additional resources to the secondary users (SUs) in a CRN is an extremely challenging task and integer programming based optimization tools have to be employed to achieve the goals which include, among several aspects, increasing SUs throughput without interfering with the activities of primary users. The theory of the optimization tools that can be used for resource allocations (RA) in CRN have been well established in the literature; convex programming is one of them, in fact the major one. However when it comes to application and implementation, it is noticed that the practical problems do not fit exactly into the format of well established tools and researchers have to apply approximations of different forms to assist in the process. In this survey paper, the optimization tools that have been applied to RA in CRNs are reviewed. In some instances the limitations of techniques used are pointed out and creative tools developed by researchers to solve the problems are identified. Some ideas of tools to be considered by researchers are suggested, and direction for future research in this area in order to improve on the existing tools are presented.

Resource Allocation to Support QoE in Hierarchical Macrocell-Femtocell Networks (계층화된 매크로-펨토셀 망에서 QoE를 지원하기 위한 자원할당 방법)

  • Lee, Gi-Sung;Lee, Jong-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.708-715
    • /
    • 2016
  • Quality of experience (QoE) for multimedia services in macro-femtocell networks is one of the key issues for 5G mobile and wireless communications. A service management structure needs to guarantee the QoE for mobile users based on end-to-end negotiation to support service continuity. Resource management is necessary to maintain the QoE requirements of different multimedia applications, because service continuity may be impeded by delays. This paper proposes four types of resource management scheme to support consistent QoE for different multimedia services. For this purpose, a QoE structure is suggested, and a resource allocation scheme is proposed by utilizing a fixed amount of radio resources reserved for dedicated use to support QoE. Various multimedia services with different requirements (such as voice, image, and data) can be serviced simultaneously, because QoE can be provided under our proposed scheme. Simulation results show that our scheme provides better performance than a conventional scheme with respect to outage probability and total data throughput.