• 제목/요약/키워드: Allocation of Communication Resources

Search Result 159, Processing Time 0.031 seconds

Performance Evaluation of Pilotless Channel Estimation with Limited Number of Data Symbols in Frequency Selective Channel

  • Wang, Hanho
    • International Journal of Contents
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2018
  • In a wireless mobile communication system, a pilot signal has been considered to be a necessary signal for estimating a changing channel between a base station and a terminal. All mobile communication systems developed so far have a specification for transmitting pilot signals. However, although the pilot signal transmission is easy to estimate the channel,(Ed: unclear wording: it is easy to use the pilot signal transmission to estimate the channel?) it should be minimized because it uses radio resources for data transmission. In this paper, we propose a pilotless channel estimation scheme (PCE) by introducing the clustering method of unsupervised learning used in our deep learning into channel estimation.(Ed: highlight- unclear) The PCE estimates the channel using only the data symbols without using the pilot signal at all. Also, to apply PCE to a real system, we evaluated the performance of PCE based on the resource block (RB), which is a resource allocation unit used in LTE. According to the results of this study, the PCE always provides a better mean square error (MSE) performance than the least square estimator using pilots, although it does not use the pilot signal at all. The MSE performance of the PCE is affected by the number of data symbols used and the frequency selectivity of the channel. In this paper, we provide simulation results considering various effects(Ed: unclear, clarify).

Simulation of Contaminant Draining Strategy with User Participation in Water Distribution Networks

  • Marlim, Malvin S.;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.146-146
    • /
    • 2021
  • A contamination event occurring in water distribution networks (WDNs) needs to be handled with the appropriate mitigation strategy to protect public health safety and ensure water supply service continuation. Typically the mitigation phase consists of contaminant sensing, public warning, network inspection, and recovery. After the contaminant source has been detected and treated, contaminants still exist in the network, and the contaminated water should be flushed out. The recovery period is critical to remove any lingering contaminant in a rapid and non-detrimental manner. The contaminant flushing can be done in several ways. Conventionally, the opening of hydrants is applied to drain the contaminant out of the system. Relying on advanced information and communication technology (ICT) on WDN management, warning and information can be distributed fast through electronic media. Water utilities can inform their customers to participate in the contaminant flushing by opening and closing their house faucets to drain the contaminated water. The household draining strategy consists of determining sectors and timeslots of the WDN users based on hydraulic simulation. The number of sectors should be controlled to maintain sufficient pressure for faucet draining. The draining timeslot is determined through hydraulic simulation to identify the draining time required for each sector. The effectiveness of the strategy is evaluated using three measurements, such as Wasted Water (WW), Flushing Duration (FD), and Pipe Erosion (PE). The optimal draining strategy (i.e., group and timeslot allocation) in the WDN can be determined by minimizing the measures.

  • PDF

Optimal Detection for NOMA Systems with Correlated Information Sources of Interactive Mobile Users (상호작용 이동통신 사용자의 상관 정보원을 가진 비직교 다중접속 시스템에서의 최적 검출)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.651-658
    • /
    • 2020
  • In the fifth generation (5G) mobile networks, the interactive mobile game users have increased tremendously, which induces correlated information sources (CIS). One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In NOMA, the users share the channel resources, so that CIS affect each user's bit-error rate (BER) performance, which is not the case for orthogonal multiple access (OMA). In this paper, we derive the optimal receiver for NOMA with CIS, and then investigate the impact of CIS on each user's BER performance.

Relay Transmission Protocol for QoS Enhancement in WiMedia Distributed MAC/WUSB Systems (WiMedia Distributed MAC 통신 시스템에서 QoS 성능 향상을 위한 릴레이 통신 프로토콜)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.692-700
    • /
    • 2012
  • The WiMedia Alliance has specified a Distributed Medium Access Control (D-MAC) protocol based on UWB for high speed wireless home networks and Wireless USB. In this paper, firstly, the fair SoQ-based Distributed Reservation Protocol (DRP) for D-MAC is analyzed. And a novel SoQ-based relay transmission protocol is proposed to overcome DRP conflicts fast. In the proposed protocol, each device executes the Satisfaction of QoS (SoQ) time slot allocation algorithm independently. And, in order to give the loser device due to DRP conflicts another chance to maintain QoS resources, the proposed relay transmission protocol helps the device reserve another indirect link maintaining the required QoS resources via a relay node.

SoQ-based Relay Transmission Protocol for Wireless USB over WiMedia D-MAC (WiMedia D-MAC 기반 Wireless USB 시스템을 위한 SoQ-based 릴레이 통신 프로토콜)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1324-1329
    • /
    • 2013
  • The WiMedia Alliance has specified a Distributed Medium Access Control (D-MAC) protocol based on UWB for high speed wireless home networks and WPANs. In this paper, firstly, the fair SoQ-based Distributed Reservation Protocol (DRP) for D-MAC is analyzed. And a novel SoQ-based relay transmission protocol is proposed to overcome DRP conflicts fast. In the proposed protocol, each device executes the Satisfaction of QoS (SoQ) time slot allocation algorithm independently. And, in order to give the loser device due to DRP conflicts another chance to maintain QoS resources, the proposed relay transmission protocol helps the device reserve another indirect link maintaining the required QoS resources via a relay node.

Efficient Interference Control Technology for Vehicular Moving Networks

  • Oh, Sung-Min;Lee, Changhee;Lee, Jeong-Hwan;Park, Ae-Soon;Shin, Jae Sheung
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.867-876
    • /
    • 2015
  • This paper proposes an efficient interference control scheme for vehicular moving networks. The features of the proposed scheme are as follows: radio resources are separated into two resource groups to avoid interference between the cellular and vehicle-to-vehicle (V2V) links; V2V links are able to share the same radio resources for an improvement in the resource efficiency; and vehicles can adaptively adjust their transmission power according to the interference among the V2V links (based on the distributed power control (DPC) scheme derived using the network utility maximization method). The DPC scheme, which is the main feature of the proposed scheme, can improve both the reliability and data rate of a V2V link. Simulation results show that the DPC scheme improves the average signal-to-interference-plus-noise ratio of V2V links by more than 4 dB, and the sum data rate of the V2V links by 15% and 137% compared with conventional schemes.

Channel Allocation Using Mobile Mobility and Neural Net Spectrum Hole Prediction in Cellular-Based Wireless Cognitive Radio Networks (셀룰러 기반 무선 인지망에서 모바일 이동성과 신경망 스펙트럼 홀 예측에 의한 채널할당)

  • Lee, Jin-yi
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.347-352
    • /
    • 2017
  • In this paper, we propose a method that reduces mobile user's handover call dropping probability by using cognitive radio technology(CR) in cellular - based wireless cognitive radio networks. The proposed method predicts a cell to visit by Ziv-Lempel algorithm, and then supports mobile user with prediction of spectrum holes based on CR technology when allocated channels are short in the cell. We make neural network predict spectrum hole resources, and make handover calls use the resources before initial calls. Simulation results show CR technology has the capability to reduce mobile user handover call dropping probability in cellular mobile communication networks.

Grid-based Biological Data Mining using Dynamic Load Balancing (동적 로드 밸런싱을 이용한 그리드 기반의 생물학 데이터 마이닝)

  • Ma, Yong-Beom;Kim, Tae-Young;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.81-89
    • /
    • 2010
  • Biological data mining has been noticed as an issue as the volume of biological data is increasing extremely. Grid technology can share and utilize computing data and resources. In this paper, we propose a hybrid system that combines biological data mining with grid technology. Especially, we propose a decision range adjustment algorithm for processing efficiency of biological data mining. We obtain a reliable data mining recognition rate automatically and rapidly through this algorithm. And communication loads and resource allocation are key issues in grid environment because the resources are geographically distributed and interacted with themselves. Therefore, we propose a dynamic load balancing algorithm and apply it to the grid-based biological data mining method. For performance evaluation, we measure average processing time, average communication time, and average resource utilization. Experimental results show that this method provides many advantages in aspects of processing time and cost.

A Framework of Resource Provisioning and Customized Energy-Efficiency Optimization in Virtualized Small Cell Networks

  • Sun, Guolin;Clement, Addo Prince;Boateng, Gordon Owusu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5701-5722
    • /
    • 2018
  • The continuous increase in the cost of energy production and concerns for environmental sustainability are leading research communities, governments and industries to amass efforts to reduce energy consumption and global $CO_2$ footprint. Players in the information and communication industry are keen on reducing the operational expenditures (OpEx) and maintaining the profitability of cellular networks. Meanwhile, network virtualization has been proposed in this regard as the main enabler for 5G mobile cellular networks. In this paper, we propose a generic framework of slice resource provisioning and customized physical resource allocation for energy-efficiency and quality of service optimization. In resource slicing, we consider user demand and population resources provisioning scheme aiming to satisfy quality of service (QoS). In customized physical resource allocation, we formulate this problem with an integer non-linear programming model, which is solved by a heuristic algorithm based on minimum vertex coverage. The proposed algorithm is compared with the existing approaches, without consideration of slice resource constraints via system-level simulations. From the perspective of infrastructure providers, traffic is scheduled over a limited number of active small-cell base stations (sc-BSs) that significantly reduce the system energy consumption and improve the system's spectral efficiency. From the perspective of virtual network operators and mobile users, the proposed approach can guarantee QoS for mobile users and improve user satisfaction.

A Novel Frequency Planning and Power Control Scheme for Device-to-Device Communication in OFDMA-TDD Based Cellular Networks Using Soft Frequency Reuse (OFDMA-TDD 기반 셀룰러 시스템에서 디바이스간 직접통신을 위한 SFR 자원할당 및 전송 전력조절 방법)

  • Kim, Tae-Sub;Lee, Sang-Joon;Lim, Chi-Hun;Ryu, Seungwan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.885-894
    • /
    • 2012
  • Currently, Demand of data traffic has rapidly increased by popular of smart device. It is very difficult to accommodate demand of data traffic by limited resource of base station (BS). To solve this problem, method has proposed that the Device-to-Device (D2D) reduce frequency overload of the BS and all of the user equipment (UE) inside the BS and neighbor BS don't allow communicating directly to BS. However, in LTE-Advance system cellular link and sharing radio resources of D2D link, the strong interference of the cellular network is still high. So we need to eliminate or mitigate the interference. In this paper, we use the transmission power control method and Soft Frequency Reuse (SFR) resource allocation method to mitigate the interference of the cellular link and D2D link. Simulation results show that the proposed scheme has high performance in terms of Signal to Noise Ratio (SINR) and system average throughput.