• Title/Summary/Keyword: Allocation Problem

Search Result 1,028, Processing Time 0.025 seconds

Development of a Package for the Multi-Location Problem by Genetic Algorithm (유전 알고리즘을 이용한 복수 물류센터 입지분석용 패키지의 개발)

  • Yang, Byung-Hak
    • IE interfaces
    • /
    • v.13 no.3
    • /
    • pp.479-485
    • /
    • 2000
  • We consider a Location-Allocation Problem with the Cost of Land(LAPCL). LAPCL has extremely huge size of problem and complex characteristic of location and allocation problem. Heuristics and decomposition approaches on simple Location-Allocation Problem were well developed in last three decades. Recently, genetic algorithm(GA) is used widely at combinatorics and NLP fields. A lot of research shows that GA has efficiency for finding good solution. Our main motive of this research is developing of a package for LAPCL. We found that LAPCL could be reduced to trivial problem, if locations were given. In this case, we can calculate fitness function by simple technique. We built a database constructed by zipcode, latitude, longitude, administrative address and posted land price. This database enables any real field problem to be coded into a mathematical location problem. We developed a package for a class of multi-location problem at PC. The package allows for an interactive interface between user and computer so that user can generate various solutions easily.

  • PDF

Joint wireless and computational resource allocation for ultra-dense mobile-edge computing networks

  • Liu, Junyi;Huang, Hongbing;Zhong, Yijun;He, Jiale;Huang, Tiancong;Xiao, Qian;Jiang, Weiheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3134-3155
    • /
    • 2020
  • In this paper, we study the joint radio and computational resource allocation in the ultra-dense mobile-edge computing networks. In which, the scenario which including both computation offloading and communication service is discussed. That is, some mobile users ask for computation offloading, while the others ask for communication with the minimum communication rate requirements. We formulate the problem as a joint channel assignment, power control and computational resource allocation to minimize the offloading cost of computing offloading, with the precondition that the transmission rate of communication nodes are satisfied. Since the formulated problem is a mixed-integer nonlinear programming (MINLP), which is NP-hard. By leveraging the particular mathematical structure of the problem, i.e., the computational resource allocation variable is independent with other variables in the objective function and constraints, and then the original problem is decomposed into a computational resource allocation subproblem and a joint channel assignment and power allocation subproblem. Since the former is a convex programming, the KKT (Karush-Kuhn-Tucker) conditions can be used to find the closed optimal solution. For the latter, which is still NP-hard, is further decomposed into two subproblems, i.e., the power allocation and the channel assignment, to optimize alternatively. Finally, two heuristic algorithms are proposed, i.e., the Co-channel Equal Power allocation algorithm (CEP) and the Enhanced CEP (ECEP) algorithm to obtain the suboptimal solutions. Numerical results are presented at last to verify the performance of the proposed algorithms.

On-demand Allocation of Multiple Mutual-compensating Resources in Wireless Downlinks: a Multi-server Case

  • Han, Han;Xu, Yuhua;Huang, Qinfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.921-940
    • /
    • 2015
  • In this paper, we investigate the multi-resource allocation problem, a unique feature of which is that the multiple resources can compensate each other while achieving the desired system performance. In particular, power and time allocations are jointly optimized with the target of energy efficiency under the resource-limited constraints. Different from previous studies on the power-time tradeoff, we consider a multi-server case where the concurrent serving users are quantitatively restricted. Therefore user selection is investigated accompanying the resource allocation, making the power-time tradeoff occur not only between the users in the same server but also in different servers. The complex multivariate optimization problem can be modeled as a variant of 2-Dimension Bin Packing Problem (V2D-BPP), which is a joint non-linear and integer programming problem. Though we use state decomposition model to transform it into a convex optimization problem, the variables are still coupled. Therefore, we propose an Iterative Dual Optimization (IDO) algorithm to obtain its optimal solution. Simulations show that the joint multi-resource allocation algorithm outperforms two existing non-joint algorithms from the perspective of energy efficiency.

An Optimal Reliability-Redundancy Allocation Problem by using Hybrid Parallel Genetic Algorithm (하이브리드 병렬 유전자 알고리즘을 이용한 최적 신뢰도-중복 할당 문제)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.147-155
    • /
    • 2010
  • Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.

Energy-Efficient Power Allocation for Cognitive Radio Networks with Joint Overlay and Underlay Spectrum Access Mechanism

  • Zuo, Jiakuo;Zhao, Li;Bao, Yongqiang;Zou, Cairong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2015
  • Traditional designs of cognitive radio (CR) focus on maximizing system throughput. In this paper, we study the joint overlay and underlay power allocation problem for orthogonal frequency-division multiple access-based CR. Instead of maximizing system throughput, we aim to maximize system energy efficiency (EE), measured by a "bit per Joule" metric, while maintaining the minimal rate requirement of a given CR system, under the total power constraint of a secondary user and interference constraints of primary users. The formulated energy-efficient power allocation (EEPA) problem is nonconvex; to make it solvable, we first transform the original problem into a convex optimization problem via fractional programming, and then the Lagrange dual decomposition method is used to solve the equivalent convex optimization problem. Finally, an optimal EEPA allocation scheme is proposed. Numerical results show that the proposed method can achieve better EE performance.

Improving Physical-Layer Security for Full-duplex Radio aided Two-Way Relay Networks

  • Zhai, Shenghua;An, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.562-576
    • /
    • 2020
  • The power allocation optimization problem is investigated for improving the physical-layer security in two-way relaying networks, where a full-duplex relay based half-jamming protocol (HJP-FDR) is considered. Specially, by introducing a power splitter factor, HJP-FDR divides the relay's power into two parts: one for forwarding the sources' signals, the other for jamming. An optimization problem for power split factor is first developed, which is proved to be concave and closed-form solution is achieved. Moreover, we formulate a power allocation problem to determine the sources' power subject to the total power constraint. Applying the achieved closed-form solutions to the above-mentioned problems, a two-stage strategy is proposed to implement the overall power allocation. Simulation results highlight the effectiveness of our proposed algorithm and indicate the necessity of optimal power allocation.

An Optimal Missile Allocation Problem for Maximizing Kill Probability (격추확률 최대화를 위한 미사일 최적배치 문제)

  • Jung, Chi-Young;Lee, Jae-Yeong;Lee, Sang-Heon
    • Korean Management Science Review
    • /
    • v.27 no.1
    • /
    • pp.75-90
    • /
    • 2010
  • In this paper, we proposed new solution procedure of the air defense missile allocation problem. In order to find the optimal location of missile, we formulated a simple mathematical model maximizing the kill probability of enemy air threat including aircraft and missile. To find the Kill probability, we developed a new procedure using actual experimental data in the mathematical model. Actual experimental data mean real characteristic factor, which was acquired when the missile had been developed through missile fire experiment. The result of this study can offer practical solution for missile allocation and the methodology in this study can be used to the decision making for the optimal military facility allocation.

A Seat Allocation Problem for Package Tour Groups in Airlines (항공사 패키지 여행 단체수요의 좌석할당 문제)

  • Song, Yoon-Sook;Lee, Hwi-Young;Yoon, Moon-Gil
    • Korean Management Science Review
    • /
    • v.25 no.1
    • /
    • pp.93-106
    • /
    • 2008
  • This study is focused on the problem of seat allocation for group travel demand in airlines. We first explain the characteristic of group demand and its seat allocation process. The group demand in air travel markets can be classified into two types : incentive and package groups. Allocating seats for group demand depends on the types of group demand and the relationship between airlines and travel agents. In this paper we concentrate on the package group demand and develop an optimization model for seat allocation on the demand to maximize the total revenue. With some assumptions on the demand distribution and the linear approximation technique, we develop a mixed IP model for solving our problem optimally. From the computational experiments, we can find our optimization model can be applied well for real-world application.

Communication Resource Allocation Strategy of Internet of Vehicles Based on MEC

  • Ma, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.389-401
    • /
    • 2022
  • The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.

Fixed-Length Allocation and Deallocation of Memory for Embedded Java Virtual Machine (임베디드 자바가상기계를 위한 고정 크기 메모리 할당 및 해제)

  • 양희재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1335-1338
    • /
    • 2003
  • Fixed-size memory allocation is one of the most promising way to avoid external fragmentation in dynamic memory allocation problem. This paper presents an experimental result of applying the fixed- size memory allocation strategy to Java virtual machine for embedded system. The result says that although this strategy induces another memory utilization problem caused by internal fragmentation, the effect is not very considerable and this strategy is well-suited for embedded Java system. The experiment has been performed in a real embedded Java system called the simpleRTJ.

  • PDF