The effects of various All-Etching Agents (10% phosphoric acid, 10% maleic acid and 10 % citric acid) and 32 % phosphoric acid and varied etching time were evaluated by observing the morphology of the etched enamel surfaces using Scanning electron microscopy and by measuring the shear bond strength of a composite resin to human enamel. A total of 156 extracted premolar and molar teeth free of irregularities were employed in this study. Specimens for the observation of enamel morphology were divided into 12 groups of 3 teeth each, based on the type of etchant used and application time. After exposure to the etching agent specimens were washed air-dried and then glued to aluminum stubs and coated with a layer of gold for examination in the scanning electron microscope. Specimens for the evaluation of bond strength were divided into 12 groups of 10 teeth each also based on the type of etchant used and application time. After exposure to the etching agent the specimens were washed, air-dried and a thin layer of bonding agent was applied using a brush. Z 100 composite resin was light cured to the surface and stored at $37^{\circ}C$, 100% humidity for 7 days. An Instron Universal Testing Machine was used to apply a shearing force at $90^{\circ}$ angle from the enamel surface. It is concluded from this study that commercial All-etching agents can be used with a 15-second etching without adversely affecting retention of dental resin materials. At the same time, the acid concentration is probably a suitable compromise regarding the acid's function as a dentin demineralizing all-etch conditioning agent. The following results were obtained. 1. Specimens etched with 10 % citric acid showed a random superficial etching pattern which could not be related to prism morphology. 2. Specimens etched with 10 % and 32 % phosphoric acid and 10 % maleic acid showed a type I pattern in which core material was preferentially removed leaving the prism peripheries relatively intact or a type II pattern in which prism peripheries were preferentially removed. This delineation became more distinguished as etching time was increased. 3. All-Etching Agents and 32 % phosphoric acid showed a statistically significant higher shear bond strength at 15 seconds etching time.(p<0.05) 4. 10 % maleic acid and 32 % phosphoric acid exhibited a statistically significant higher shear bond strength than 10 % phosphoric and citric acid at 15 seconds etching time.(p<0.05).
The effect of collagen dissolution in acid conditioned dentin was morphologically examined by both scanning and transmission electron microscopy. 18 freshly extracted human molars and dentin bonding systems of All Bond 2, Scotchbond Multipurpose, Superbond D-Liner were used in this study. For SEM preparation, each 3 of ~ exposed dentin surfaces were acid conditioned by using various acids within the above three bonding systems respectively. After acid conditioning of the other 3 exposed dentin surfaces as above, they were treated with 1.7% NaOCl for 2 minutes. The remaining 3 dentin surfaces were acid conditioned and treated with 3.3 % NaOCl for 2 minutes. All of the specimens were then fixed in 4 % glutaraldehyde for 12 h at $4^{\circ}C$ and dehydrated in ethanols grades from 50 % to 100 %, then surface changes of the specimens were observed by using SEM. For TEM preparation, exposed dentin surfaces were acid conditioned with the same acid as SEM specimens and treated with 1.7%, 3.3 % NaOCl respectively, then applied with corresponding bonding agents. After the procedures were finished, composite resin were applied on the dentin surfaces and light cured. Small, rectangular sticks with end dimensions of approximately 1 by 1 mm were sectioned and further sample preparative techniques for transmission electron microscopy were performed in accordance with the procedures used for ultrastructural TEM observations of calcified tissues. The results were as follows : 1. In the 1.7 % NaOCl retreated specimens after acid conditioning, the porous dentin surface of intertubular dentin and wide opening of dentinal tubules were appeared. And there were fine irregularities on the intertubular dentin, indicating a clear difference as compared with the acid conditioned specimens. 2. In the 3.3% NaOCl retreated specimens after acid conditioning, the intertubular dentin was further eroded causing a more porous and wider opening of dentinal tubules. Moreover, sharp irregularities on the intertubular dentin were more evident than those of acid conditioned and 1.7% NaOCl retreated specimens. 3. In all of the acid conditioned specimens, the resin-dentin hybrid layer of approximately 3.5mm thickness was formed and the collapsed collagen layer was observed on the uppermost part of hybrid layer in the specimens applied with All Bond 2. The collgen fibrils of intertubular dentin in specimens applied with Scotchbond Multipurpose were running perpendicular to the interface, and electron dense black layer demarcated from the deep unaltered dentin was more evident in the specimen applied with Superbond D-Liner than any other specimens. 4. In the 1.7 % NaOCl retreated specimens after acid conditioning, the resin-dentin hybrid layer of approximately 2.5-3.0mm thickness was formed and the collapsed collagen layer and longitudinally running collagen fibrils as shown in the acid conditioned specimens were observed in the specimens applied with All Bond 2 and Superbond D-Liner. 5. In all of the 3.3% NaOCl retreated specimens after acid conditioning, the evidence of resin-dentin hybrid layer was not identified ; nevertheless, the longitudinally running collagen fibrils remained slightly in the specimens applied with All Bond 2.
The research of the dentin bonding system was mainly on the chemistry and bonding strength. And in vitro assessement of biocompatibility of dentin bonding system was not completely developed. The purpose of this study was to evaluate the cytotoxic effect of several dentin primers. Scotchbond Multi-Purpose (3M Dental Products. USA). Gluma (BayerDental. Germany). All-Bond (Bisco. USA). ProBond (CaulkDensply, USA) and VeridonFil (Dongyang Nylon. Korea) were included. Cytotoxicity was tested using MTT cell viability test. 0.5 ul. 1 ul. 2 ul and 10 ul of each primer were added to the 96 well plate of incubated L929 cell lines. After 30-minute. 1. 4. 24 and 72-hour exposures. absorbance of L929 cells was observed with ELISA reader. All data were analyzed using t-test. All primers showed cytotoxicity on L929 cells under every conditions used in this study. Absorbance of L929 cells was decreased by time. Scotch bond group exhibited the lowest absorbance value in all exposure time and value.
PURPOSE. The most common failure seen in restorations with a zirconia core is total or layered delamination of the ceramic veneer. In the present study, the shear bond strengths between veneering ceramics and colored zirconia oxide core materials were evaluated. MATERIALS AND METHODS. Zirconia discs ($15{\times}12{\times}1.6mm$) were divided into 11 groups of 12 discs each. Groups were colored according to the Vita Classic scale: A3, B1, C4, D2, and D4. Each group was treated with the recommended shading time for 3 s, or with prolonged shading for 60 s, except for the control group. Samples were veneered with 3 mm thick and 3.5 mm in diameter translucent ceramic and subjected to shear test in a universal testing machine with a crosshead speed of 1 mm/min. One-way analysis of variance (ANOVA) and Tukey's HSD tests were used for comparisons of the groups having the same shading times. A paired t-test was used for groups of the same color (3 s/60 s). RESULTS. Among the 11 groups investigated C4 (3 s) had the highest bond strength with a value of 36.40 MPa, while A3 (3 s) showed the lowest bond strength with a value of 29.47 MPa. CONCLUSION. Coloring procedures can affect zirconia/ceramic bond strength. However, the results also showed that bond strengths of all the investigated groups were clinically acceptable.
Kim, Byung-Jin;Koh, Jun-Won;Lee, Yong-Keun;Cho, Hye-Won
The Journal of Korean Academy of Prosthodontics
/
v.35
no.3
/
pp.458-469
/
1997
This study was to compare the tensile bond strength and flexibility of four different soft liners(Coe-Soft, Soft Relining, Soft-Liner, Dura Base Soft) before & after thermocycling. Each soft liner was bonded to denture base resin block, and measured the tensile bond strength and modulus of elasticity using Universal testing machine. The mean value of tensile bond strength and modulus of elasticity for each experimental groups were statistically processed by SPSS(Statistical Package of Social Science). The obtained results were as follows : 1. Dura Base Soft had the highest tensile bond strength and Coe-Soft had the lowest tensile bond strength. 2. Coe-Soft had the lowest modulus of elasticity, and Dura Base Soft had the highest modulus of elasticity. 3. Thermocycling had no effects on the tensile bond strength and modulus of elasticity of all the soft liners. 4. The failure modes of Coe-Soft, Soft Relining, Soft Liner were mainly cohesive failure, and that of Dura Base Soft were mainly adhesive failure.
The purpose of this study was to evaluate the effects of four metal surface treatments on the shear bond strength of reline resin to Ni-Cr alloy. The denture base metal used in this study was Ni-Cr alloy(Ticonium Premium 100. Ticonium Co., U.S.A.). 120 specimens were divided into five metal surface treatments: sandblasting only, MR. BOND(Tokuyama Corp.. Japan), Cesead Opaque Primer(Kuraray Co., Japan), METALPRIMER II(GC Corp., Japan) and Super-Bond C&B(Sun Medical Co., Japan) after sandblasting. They were bonded with one of three reline resins Mild Rebaron(GC Corp., Japan), Mild Rebaron LC(GC Corp., Japan) and Meta Base M(Sun Medical Co., Japan). Then they were thermocycled 1,000 times at temperature of $4^{\circ}C$ and $60^{\circ}C$. The shear bond strengths were measured using the universal testing machine(Instron, Model 4301, England) with a cross-head speed of 2 mm/min. The results were as follows : 1. All metal primers and adhesive cement significantly improved the bond strength of reline resin to Ni-Cr alloy compared with sandblasted specimens. 2. In Mild Rebaron and Mild Rebaron LC. Cesead Opaque Primer showed the highest bond strength, but the differences among Cesead Opaque Primer, MR. BOND and METALPRIMER II were not significant. The bond strength of Cesead Opaque Primer was significantly different with that of Super-Bond C&B. 3. In Meta Base M, Super-Bond C&B showed the highest bond strength, but there was no difference between Super-Bond C&B and three metal primers. 4. There was no difference in the bond strength between Mild Rebaron and Mild Rebaron LC when metal surface was treated with the same method. 5. The bond strengths of Mild Rebaron and Mild Rebaron LC treated with Cesead Opaque Primer were higher than that of Meta Base M. The bond strengths of Mild Rebaron treated with MR. BOND and METALPRIMER II was higher than that of Meta Base M, However, there was no difference among three reline resins treated with Super-Bond C&B.
The purpose of this study was to investigate the effect of acid treatment of fluoride applied dentin surface with various concentrations of phosphoric acid for various periods of time on dentin bonding. Dentin specimens prepared from freshly extracted bovine mandibular anterior teeth were divided into fluoridated and nonfluoridated groups. Specimens of nonfluoridated group were pretreated with 10% phosphoric acid for 15 seconds. Those of fluoridated groups were treated with 2% sodium fluoride or 2% stannous fluoride solution for 5 minutes and stored in $37^{\circ}C$ distilled water for 3 days, followed by phosphoric acid treatment. The concentrations of phosphoric acid were 10%, 32% or 50% and the treatment periods of time were 15, 30 or 60 seconds. All the specimens were bonded with All Bond$^{(R)}$ 2 and Bisfil$^{TM}$ composite resin. After bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, tensile bond strengths of each specimens were measured and the pretreated dentin and the fractured dentin surfaces were examined under the scanning electron microscope. The results were as follows : The tensile bond strengths from the fluoridated groups were significantly lower than those from the nonfluoridated group when the concentrations of phosphoric acid and the treatment periods of time were equal in all the groups (p<0.05). In general, the higher the concentration of phosphoric acid and the longer the treatment period of time for acid etching on the fluoride applied dentin surface, the higher were the bond strength values. Recovery of bond strength of the dentin bonding agent was better in the NaF applied group than in the $SnF_2$ applied one. SEM findings of NaF applied and $SnF_2$ applied dentin surfaces demonstrated reaction product-covered and partially or completely obstructed dentinal tubules. SEM findings of dentin surfaces fluoridated for 5 minutes followed by etching showed wider tubular openings and more clean dentin surfaces when dentin was etched with higher concentration of phosphoric acid for longer period of time. On the SEM observations of the fractured dentin-resin interface, the etched specimens of fluoridated group showed an adhesive failure mode when the concentration of phosphoric acid and the treatment period of time were same as in the nonfluoridated group. As the concentration of phosphoric acid and the treatment period of time increase during acid etching, the cohesive failure area increased. However, excessive acid etching caused adhesive failure.
The purpose of this study was to investigate the effect of dentin bonding agents on the bond strength of composite resin restorations in case of applying the dentin bonding agents to acid etched enamel surfaces. Freshly extracted 364 bovine anterior teeth were selected as a adherents. 320 enamel specimens were divided into two groups(unetched group (1) and etched group (2) for testing the shear bond strength, 40 specimens were used for the hardness testing, and 4 specimens of rest were to observe the resin-tag formation into etched enamel surfaces. All surfaces of enamel specimens were polished with 320~1500 SiC paper under continuous running water. In Group (1), 100 enamel specimens were polished and unetched. 220 polished enamel specimens in Group (2) were etched with 37 % phosphoric acid solution for 60 seconds, washed with water for 20 seconds, and dried with a light air pressure for 60 seconds. Three kinds of dentin bonding agents(Gluma, Prisma, Scotchbond 2) were evaluated the effect on the bond strength to conditioned enamel surfaces. Shear bond strengths were measured on the three cases such as a coating of primer only, a coating of sealer only, and a sequential coating of primer and sealer to acid etched enamel surfaces were compared with the bond strengths measured by the coating of enamel bonding agent followed by the bonding of composite resin (Photo clearfil bright, Kuraray, Japan) to unetched and acid etched enamel surfaces. In addition, the hardness tested on the adhesive fractured surface between composite resin enamel as a mean of evaluation of a factor whether the mechanical bond strengths were affected and the penetration of dentin bonding agents into etched enamel surfaces was also observed. Bond strengths were measured using the method of shear bond strength by a universal testing machine (Instron-4467, USA), statistical test were applied to the results using a one way analysis variance(ANOVA), and hardness was measured by the Vicker's Hardness Tester(MHT-i, Matsuzawa, Japan) and the penetration of the resins were observed by the SEM (Hitachi, S-2300, Japan). The following conclusions were drawn; 1. Enamel bonding agent showed to affect the improvement of bond strength of composite resin to enamel surface both unetched and etched. 2. Dentin bonding agents could be resulted in increase of bond strength to unetched enamel surface, but there were no statistical significances. 3. Bond strengths to etched enamel surface were significantly decreased with a coating of dentin primer only. 4. Coating of sealer only and coating of primer and sealer noticed the similar bond strengths of composite resin to etched enamel using the enamel bonding agents. 5. The applying method proved to be more effective than the kinds of dentin bonding agents on the bond strength of composite resin to etched enamel than the kind of dentin. 6. Vicker's hardness numbers of dentin bonding agents were lower than that of composite resin, but the degree of penetration of dentin bonding agents into etched enamel surfaces was excellent.
Journal of the korean academy of Pediatric Dentistry
/
v.27
no.3
/
pp.444-456
/
2000
To test the shear bond strength of a new "one-bottle adhesive" system to primary dentin two commercially available one-bottle adhesives (Prime & Bond NT, Single bond) and conventional three step system(Scotchbond Multi-Purpose Plus) were included for comparison. And We observe the interfacial morphology by scanning electron microscope. 90 primary molar teeth were embedded in acrylic and buccal and lingual surface were polished to 320 grit to create standardized dentin surface for testing. After bonding of composite resin to sample surfaces according to the manufacturer s direction and 1000 times thermocycling in dwell time 30 second, Shear bond strengths of adhesives to dentin were determined using universal testing machine and analyzed by ANOVA test. Another groups of specimens were treated by hydrochloric acid to secure the resin only and those tags were evaluated under SEM for their length and forms and the morphology of the bonding sites were also observed. The result are as follows. 1. Group I(Prime & Bond NT) showed higher shear bond strength than group iI(Single Bond) and III(Scotchbond Multi Purpose Plus) but no statistically significant difference was founded between groups(p>.05). 2. Relating long resin tags of $70-120{\mu}m$ were observed in samples of all groups under SEM. We could observed hybrid layer, resin tag and many lateral branches in every group. But, we observed in group III rare lateral branched than other two group and discontinuous hybrid layer.
The purpose of this work was to study the compatibility of several commercially available dentin adhesives with composite resins. In this study, V-shaped cavity preparations were created on both buccal and lingual surfaces of 60 extracted human premolars($3mm{\times}3mm{\times}2mm$ deep). Preparations were located such that the occlusal margins were on the enamel and the gingival margins were on the cementum(1mm below the CEJ). These specimens were randomly divided into three equal groups. Three dentin adhesives(Scotchbond Multi-Purpose, All Bond 2, Prisma Universal Bond 3)were applied to the cavity in accordance with each manufacturer's instructions. The teeth in each group were restored with four composite resins(Silux plus, Z100, Bisfil, Prisma TPH) in three increments, with each increment light-cured for 40 seconds. All specimens were exposed to 500 cycles of thermal stress. Specimens then placed in a silver nitrate solution(50% by weight) and stored in darkness for 24 hours. They were then immersed for 6 hours in photographic developing solution under flourescent light. Specimens were sectioned buccolingually through the center of the restoration and observed under a binocular stereoscope. To compare the marginal leakage, ANOVA and Dunkan's multiple range tests were used in analysis. Selected samples were further studied using scanning electron microscopy(XL20, Philips, The Netherlands). The results were as follows. 1. In all groups, the enamel margin showed significantly less leakage than the cementum margin. 2. No statistically significant differences were found in microleakage when composite resins were used with their proprietary dentin adhesives. 3. In comparison between dentin adhesives, Prisma Universal Bond 3 showed significantly less leakage at the enamel margin and Scotch bond multi-purpose showed significantly less leakage at the cementum margin than the other groups. 4. In comparison between composite resins, Silux Plus showed significantly more leakage than other groups at the enamel margin and no statistically significant differences were found in microleakage at the cementum margin. 5. According to the backscattered scanning electron microscope, microleakage occurred via gaps at the dentin adhesives/dentin interface.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.