• 제목/요약/키워드: Alkanes

검색결과 178건 처리시간 0.027초

열유동 상분리막의 구조연구

  • 김성수;김재진
    • 멤브레인
    • /
    • 제1권1호
    • /
    • pp.13-23
    • /
    • 1991
  • 열유도 상분리법을 이용하여 제조되는 분리막의 구조 변화를 열역학 및 속도론적 관점에서 고찰하였다. Polypropylene과 희석제로서 n-alkanes, n-fatty acids, n,n-bis(2-hydroxyethyl) tallowamine을 model system으로 하였다. 고분자/희석제 system의 상변화의 종류에 따라 다양한 형태의 분리막구조가 얻어졌다. 분리막의 구조에 영향을 미치는 변수로서 고분자/희석제간의 interaction parameter, 희석제의 분자 크기, 용액의 조성, 냉각 조건, 희석제의 결정화 온도 등이며, 각 변수의 역할을 전자현미경을 사용하여 규명하였다. 열유동 상분리법에 의하여 제조된 분리막은 inter-spherulitic 및 intra-spherulitic pore의 이중 구조로 이루어짐을 확인하였다.

  • PDF

Molecular Dynamics Simulation on thermodynamic and Structural Properties of Liquid Hydrocarbons : Normal Alkanes

  • Im, Won-Pil;Won, Young-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권10호
    • /
    • pp.852-856
    • /
    • 1994
  • A series of aliphatic hydrocarbons, methane to hexane in the liquid state, are modeled with the molecular mechanical potential parameters treating all hydrogen degrees of freedom explicitly. Thermodynamic properties (heat capacities and heats of vaporization) are calculated from relatively short (20ps) molecular dynamics trajectories. The liquid state structures are also examined through various radial distribution functions. Molecular dynamics simulations reproduce experimentally measured properties within a few percent errors, thus indicate that the present set of all-hydrogen parameters is suitable for simulating macromolecular systems in bulk.

칼륨 이온 치환 제올라이트 L 중의 C$_1$-C$_5$ 알칼 및 벤젠의 열역학적 특성

  • 문성두;김양;김은식;최대웅
    • 대한화학회지
    • /
    • 제34권5호
    • /
    • pp.389-395
    • /
    • 1990
  • 칼륨 이온 치환 제올라이트 L과 C$_1$-C$_5$ 알칸 및 벤젠의 상호작용 퍼텐셜 에너지를 원자-원자 근사를 적용시켜서 계산하였다. 퍼텐셜 에너지 계산에 사용된 벤젠의 구성 원자 전하는 칼륨 이온과 벤젠 사이의 실험적 엔탈피 값으로부터 구했다. 계산된 퍼텐셜 에너지를 기초로하여 흡착분자의 열역학적 특성(흡착분자의 퍼텐셜 지도와 매우 낮은 피복률에서의 등량흡착열 및 내부에너지 변화량)을 계산하였다. C$_1$-C$_5$ 알칸의 계산된 등량흡착열은 실험데이타와 잘 일치하였지만, 벤젠의 계산값은 실험 값보다 조금 크게 나타났다.

  • PDF

학교 생활 쓰레기의 성분 분석과 소형소각로 운전에 따른 유해성 오염물의 배출 잠재성 분석 연구 (Analysis of the Emission Potential of Hazardous Pollutants Produced from disposal of the School Solid Wastes by Small-Scale Incinerator)

  • 이병규
    • 한국대기환경학회지
    • /
    • 제16권4호
    • /
    • pp.299-308
    • /
    • 2000
  • This study analyzed solid wastes generated from a school. The emission potential of hazardous pollutants generated from incineration of the school solid wastes (SSWs) was analyzed. Components of the SSWs were identified and the SSWs were classified into combustible and non-combustible wasts. The combustible wastes consisted of papers of 56.5^ plastics of 30.2% woods of 7.1% and fibers of 6.1% based on weight of the wastes. The moisture content and the ash content of the combustible wastes were 18~20% and 11~13% respectively. The combustible wastes of the SSWs were incinerated by using a small-scale incinerator. Fly and bottom ashes and volatile organic compounds (VOCs) were collected from the incineration. Also the metal leaching experiments on the fly and bottom ashes were performed, In analysis of metals leached from the ashes the total amounts of metals leached in the acid solution (pH=3) were much greater than those in the neutral solution (pH=5.8~6.2) For the same amounts of the fly and bottom ashes the total amounts of metals leached from the fly ashes were much greater than those from the bottom ashes. The VOCs produced from incineration of the SSWs consisted of aromatics of 42.1% aliphatic alkenes of 26.3% oxidized forms of 17.3% and aliphatic alkanes of 14.3% In addition the considerable amounts of hazardous air pollutants (e.g benzene chloro-benzene and chloro-alkanes) and compounds (e. g, aliphatic alkenes) with high potential of ozone or photochemical smog formation were identified from the incineration experiment of the SSWs.

  • PDF

${\alpha},{\omega}$-비스[4-(4'-(S)-(+)-2-메틸부틸비페닐-4-카르복시)페녹시]알칸 -새로운 디메소겐 화합물의 합성 및 액정성 (${\alpha},{\omega}$-Bis[4-(4'(S)-(+)-2-methylbutylbiphenyl-4-carboxy)phenoxy]alkanes-Synthesis and Liquid Crystalline Properties of New Dimesogenic Compounds)

  • 김재훈;이수민;진정일
    • 대한화학회지
    • /
    • 제42권6호
    • /
    • pp.679-695
    • /
    • 1998
  • A series of ${\alpha}{\omega}-bis[4-(4'-(S)-(+)-2-methylbutylbiphenyl-4-carboxy)phenoxy]alkanes$, were synthesized, and their thermal and liquid crystalline properties were studied. The chain length of the central polymethylene spacers, x, of the chiral twin compounds was varied from 3 to 12. These compounds were characterized by elemental analysis, IR and NMR spectroscopy, differential thermal analysis (DSC), and crosspolarized microscopy. All compounds were found to be enantiotropic liquid crystalline, and the values of melting $(T_m)$ and isotropization temperature $(T_i)$ as well as ${\delta}H_I$ and ${\delta}S_I$ decreased in a zig-zag fashion, revealing the so called odd-even effect as x increased. Their mesomorphic properties fell into four categories depending upon x; (a) compounds with x=3, 4 and 5 formed only a cholesteric phase on heating, while on cooling they went through two transitions of isotropic (I)-to-cholesteric (Ch) and Ch-to-smectic $A\;(S_A)$ phases before crystallization. (b) compounds with x=6, 8 and 10 exhibited only a cholesteric phase both on heating and on cooling. (c) compounds with x=7 and 9 went through three transitions of crystal $(C)-to-S_A,\;S_A-to-Ch,$ and Ch-to-I phases on heating while on cooling they went through four transitions of I-to-Ch, $Ch-to-S_A,\;S_A-to-Smectic\;C\;(S_C),\;and\;S_c-to-C$ phases in that order, and (d) compounds with x=11 and 12 went reversibly through four transitions of $C-to-S_C,\;S_C-to-S_A,\;S_A-to-Ch,$ and Ch-to-I phases.

  • PDF

Application of Flory-Treszczanowicz-Benson model and Prigogine-Flory-Patterson theory to Excess Molar Volume of Binary Mixtures of Ethanol with Diisopropyl Ether, Cyclohexane and Alkanes (C6-C9)

  • Kashyap, Pinki;Rani, Manju;Tiwari, Dinesh Pratap;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • 제58권2호
    • /
    • pp.257-265
    • /
    • 2020
  • Densities (ρ) for binary mixtures of ethanol (1) + diisopropyl ether (DIPE) or cyclohexane or alkane (C6-C9) (2) were measured at 298.15 K, 308.15 K and 318.15 K. The excess molar volume (VEm) of binary mixtures was calculated using ρ data and correlated with Redlich-Kister polynomial equation. The VEm values for binary mixtures of ethanol (1) + cyclohexane or n-alkane (C6-C9) (2) were positive, whereas for ethanol (1) + DIPE (2) these were negative. The magnitude of VEm values follows the order: cyclohexane > n-nonane > n-octane > n-heptane > n-hexane > DIPE. The VEm values have been interpreted qualitatively and also quantitatively in terms of Flory-Treszczanowicz-Benson (FTB) model and Prigogine-Flory-Patterson (PFP) theory. The values VEm predicted using FTB model agree well with experimental VEm values at all mole fractions. But the PFP theory describes well VEm data in ethanol-rich region (x1 > 0.5) for all binary mixtures and is able to predict the sign of VEm vs x1 curve for ethanol-lean region (x1 < 0.5) except for ethanol (1) + nonane (2) mixtures.

Biodegradation of diesel oil and n-alkanes (C18, C20, and C22) by a novel strain Acinetobacter sp. K-6 in unsaturated soil

  • Chaudhary, Dhiraj Kumar;Bajagain, Rishikesh;Jeong, Seung-Woo;Kim, Jaisoo
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.290-298
    • /
    • 2020
  • A large residual fraction of aliphatic components of diesel prevails in soil, which has adverse effects on the environment. This study identified the most bio-recalcitrant aliphatic residual fraction of diesel through total petroleum-hydrocarbon fractional analysis. For this, the strain Acinetobacter sp. K-6 was isolated, identified, and characterized and investigated its ability to degrade diesel and n-alkanes (C18, C20, and C22). The removal efficiency was analysed after treatment with bacteria and nutrients in various soil microcosms. The fractional analysis of diesel degradation after treatment with the bacterial strains identified C18-C22 hydrocarbons as the most bio-recalcitrant aliphatic fraction of diesel oil. Acinetobacter sp. K-6 degraded 59.2% of diesel oil and 56.4% of C18-C22 hydrocarbons in the contaminated soil. The degradation efficiency was further improved using a combinatorial approach of biostimulation and bioaugmentation, which resulted in 76.7% and 73.7% higher degradation of diesel oil and C18-C22 hydrocarbons, respectively. The findings of this study suggest that the removal of mid-length, non-volatile hydrocarbons is affected by the population of bio-degraders and the nutrients used in the process of remediation. A combinatorial approach, including biostimulation and bioaugmentation, could be used to effectively remove large quantities of aliphatic hydrocarbons persisting for a longer period in the soil.