• Title/Summary/Keyword: Alkaline-etching

Search Result 33, Processing Time 0.019 seconds

Selective Wet-Etching Properties of GeSbTe Phase-Change Films (GeSbTe 상변화 박막의 선택적 에칭 특성)

  • Kim, Jin-Hong;Lim, Jung-Shik;Lee, Jun-Seok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.118-122
    • /
    • 2007
  • Phase-change wet-etching technology using GeSbTe phase-change films is developed. Selective etching between an amorphous and a crystalline phase can be carried out with an alkaline etchant of NaOH. Etching selectivity is dependent not only on the concentration of the alkaline etchant but also on the film structure. Specifically, metal films for heat control cause marked effects on the etching properties of GeSbTe film. Surviving amorphous pits can be obtained with Al metal layer, however etched amorphous pits are seen with Ag metal layer. An opposite selective etching behavior can be observed between samples with two different metal layers.

  • PDF

Wet-Etching Characteristics of Inorganic GeSbTe Films for High Density Optical Data Storage (고밀도 광기록을 위한 GeSbTe 박막의 Wet-Etching 특성연구)

  • Kim, Jin-Hong;Kim, Sun-Hee;Lee, Jun-Seok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.196-200
    • /
    • 2006
  • We are developing a phase change etching technology using an inorganic photoresist of GeSbTe film which is the recording material of the phase change disc. A selective etching phenomenon between amorphous and crystalline states can be utilized with an alkaline etchant. Phase-change pits could be formed using this technique, in which the etching selectivity is strongly dependent on the concentration of the etchant. The degree of etching was investigated by the transmittance between crystalline and amorphous films after the wet-etching. The pits patterned on the disc could be observed by AFM after wet-etching.

  • PDF

Surface Texturing and Anti-Reflection Coating of Multi-crystalline Silicon Solar Cell (다결정 실리콘 태양전지의 표면 텍스쳐링 및 반사방지막의 영향)

  • Jun, Seong-Uk;Lim, Kyung-Muk;Choi, Sock-Hwan;Hong, Yung-Myung;Cho, Kyung-Mox
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.138-143
    • /
    • 2007
  • The effects of texturing and anti-reflection coating on the reflection properties of multi-crystalline silicon solar cell have been investigated. The chemical solutions of alkaline and acidic etching solutions were used for texturing at the surface of multi-crystalline Si wafer. Experiments were performed with various temperature and time conditions in order to determine the optimized etching condition. Alkaline etching solution was found inadequate to the texturing of multi-crystalline Si due to its high reflectance of about 25%. The reflectance of Si wafer texturing with acidic etching solution showed a very low reflectance about 10%, which was attributed to the formation of homogeneous. Also, deposition of ITO anti-reflection coating reduced the reflectance of multi-crystalline si etched with acidic solution($HF+HNO_3$) to 2.6%.

TMAH/IPA Anisotropic Etching Characteristics with Addition of Pyrazine (Pyrazine이 첨가된 TMAH/IPA 이방성 식각특성)

  • 박진성;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.23-26
    • /
    • 1997
  • This work presents the TMAH/IPA anisotropic etching characteristics with addition of Pyrazine. (100) Si etching rate of 0.747 ${\mu}{\textrm}{m}$/min at 8$0^{\circ}C$ was obtained using TMAH 25 wt.% / IPA 17 vol.% / pyrazine 0.1 g. The etching rate of (100) Si is increased about 52% compare to pure TMAH 25 wt.%. But etching rate of (100) Si is decreased with increasing Pyrazine additive. Activation energy of TMAH/IPA/pyrazine is much lower than TMAH and TMAH/IPA solutions. Addition of Pyrazine does not effect on surface flatness and decreases undercutting ratio about 20 %. Therefore, TMAH/IPA/pyrazine is an attractive anisotropic etchant because of alkaline-ion free.

  • PDF

Scanning Tunneling Microscopy (STM)/Atomic Force Microscopy(AFM) Studies of Silicon Surfaces Treated in Alkaline Solutions of Interest to Semiconductor Processing

  • Park, Jin-Goo
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.1
    • /
    • pp.55-63
    • /
    • 1995
  • Alkaline solutions such as $NH_4$OH, choline and TMAH (($CH_3$)$_4$NOH) have been introduced in semiconductor wet processing of silicon wafers to control ionic and particulate impurities following etching in acidic solutions. These chemicals usually mixed with hydrogen peroxide and/or surfactants to control the etch rate of silicon. The highest etch rate was observed in $NH_4$OH solutions at a pH in alkaline solutions. It indicates that the etch rate depends on the content of $OH^{-}$ as well as cations of alkaline solutions. STM/AFM techniques were used to characterize the effect of alkaline solutions on silicon surface roughness. In SC1 (mixture of $NH_4$OH : $H_2$$O_2$ : $H_2$O) solutions, the reduction of the ammonium hydroxide proportion from 1 to 0.1 decreased the surface roughness ($R_{rms}$) from 6.4 to $0.8\AA$. The addition of $H_2$$O_2$ and surfactants to choline and TMAH reduced the values of $R_{p-v}$ and $R_{rms}$ significantly. $H_2$$_O2$ and surfactants added in alkaline solutions passivate bare silicon surfaces by the oxidation and adsorption, respectively. The passivation of surfaces in alkaline solutions resulted in lower etch rate of silicon thereby provided smoother surfaces.s.ces.s.

  • PDF

Influence of Crystalline Si Solar Cell by Rie Surface Texturing (RIE 표면 텍스쳐링 모양에 따른 결정질 실리콘 태양전지의 영향)

  • Park, In-Gyu;Yun, Myoung-Soo;Hyun, Deoc-Hwan;Jin, Beop-Jong;Choi, Jong-Yong;Kim, Joung-Sik;Kang, Hyoung-Dong;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • We fabricated a plasma texturing for multi-crystalline silicon cells using reactive ion etching (RIE). Multi-crystalline Si cells have not benefited from the cost-effective wet-chemical texturing processes that reduce front surface reflectance on single-crystal wafers. Elimination of plasma damage has been achieved while keeping front reflectance to extremely low levels. We will discuss reflectance, quantum efficiency and conversion efficiency for multi-crystalline Si solar cell by each RIE process conditions.

Analysis of Optical Process Depending On Texturing Process of Si Wafer (실리콘 웨이퍼의 표면조직화에 따른 광학적 특성분석)

  • Oh, Teresa
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2439-2443
    • /
    • 2011
  • To obtain the effect of texturing process in Solar cells, the Si-wafers were textured by using the IPA+DI water mixed etching solution with KOH alkaline. All samples were analyzed by the scanning electron microscopy for the surface images, and it was researched the correlation between the efficiency of optical properties and the effect of texturing. From the results of the surface images obtained by SEM, mc-Si wafer shows a isotropic surface but sc-Si wafers displays the unisotropic surface. The reflectance was improved at the sc-Si wafer textured uniformly, and the reflectance of over etched-samples increased.

Characterization of Titanium Implant Anodized in Various Electrolytes

  • Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Park, Joon-Bong;Hur, Yin-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.43-46
    • /
    • 2002
  • Commercial titanium rod was anodized in three types of electrolytes such as 0.06 mol/L $\beta-glycerophosphate+0.3mol/L$ calcium acetate, 0.06mol/L $\beta-glycerophosphate+0.3mol/L$ sodium acetate and 0.06 mol/L $\beta-glycerophosphate+5mol/L$ calcium phosphate. The titanium oxide layer $(TiO_2)$ was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and electron spectroscopy chemical analysis (ESCA). Numerous micropores were observed on the titanium oxide layer by SEM. The diameter of micropores increased with the increase of electrolytic voltage. The titanium oxide layer was composed of anatase structure. The phosphorous element was detected at 130 eV binding energy, but calcium was not found in the oxide layer because of lower contents. After anodizing the oxide layer was etched in the 30g/L NaOH solution at $80^{\circ}C$ for 1hr. The surroundings of micropores were much more smoothed and rounded than before alkaline etching.

Multi-crystalline Silicon Solar Cell with Reactive Ion Etching Texturization

  • Park, Seok Gi;Kang, Min Gu;Lee, Jeong In;Song, Hee-eun;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.419-419
    • /
    • 2016
  • High efficiency silicon solar cell requires the textured front surface to reduce reflectance and to improve the light trapping. In case of mono-crystalline silicon solar cell, wet etching with alkaline solution is widespread. However, the alkali texturing methods are ineffective in case of multi-crystalline silicon wafer due to grain boundary of random crystallographic orientation. The acid texturing method is generally used in multi-crystalline silicon wafer to reduce the surface reflectance. However the acid textured solar cell gives low short-circuit current due to high reflectivity while it improves the open-circuit voltage. To reduce the reflectivity of multi-crystalline silicon wafer, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE experimental condition with change of RF power (100W, 150W, 200W, 250W, 300W). During experiment, the gas ratio of SF6 and O2 was fixed as 30:10.

  • PDF

Study on Improving Surface Structure with Changing RF Power Conditions in RIE (reactive ion etching) (반응성 이온 건식식각에서 RF Power 변화에 따른 표면 조직화 개선 연구)

  • Park, Seok-Gi;Lee, Jeong In;Kang, Min Gu;Kang, Gi-Hwan;Song, Hee-eun;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.455-460
    • /
    • 2016
  • A textured front surface is required in high efficiency silicon solar cells to reduce reflectance and to improve light trapping. Wet etching with alkaline solution is usually applied for mono crystalline silicon solar cells. However, alkali texturing method is not appropriate for multi-crystalline silicon wafers due to grain boundary of random crystallographic orientation. Accordingly, acid texturing method is generally used for multi-crystalline silicon wafers to reduce the surface reflectance. To reduce reflectivity of multi-crystalline silicon wafers, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE condition by different RF power condition (100, 150, 200, 250, 300 W).