• Title/Summary/Keyword: Alkaline series

Search Result 132, Processing Time 0.021 seconds

Review of Radiometric Ages for Phanerozoic Granitoids in Southern Korean Peninsula (남한 지역 현생 화강암류의 연대측정 결과 정리)

  • Cheong, Chang-Sik;Kim, Nam-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.173-192
    • /
    • 2012
  • Previous age data were reviewed for 98 sites of Phanerozoic granitoids in the southern part of the Korean Peninsula. Subduction-related granitic magmatism has occurred in southeastern Korea since Early Permian. In the middle part of the Yeongnam massif, arc-related tonalites, trondhjemites, granodiorites, and monzonites were emplaced during Early Triassic. After Middle Triassic continental collision in central Korean Peninsula, post-collisional shoshonitic and high-K series and A-type granitoids were emplaced in the southwestern Gyeonggi massif and central Okcheon belt during Late Triassic. Early Jurassic calc-alkaline granitoids are mostly distributed in the middle part of the Yeongnam massif and Mt. Seorak area, northeastern Gyeonggi massif. On the other hand, Middle Jurassic calc-alkaline granitoids pervasively occur in the Okcheon belt and central Gyeonggi massif. This selective distribution could be attributed to the change in the position of trench, subduction angle, or the direction of subduction. Most Cretaceous and Paleogene granitoids are distributed in the Gyeongsang basin, with the latter emplaced exclusively along the eastern coastline. Outside the Gyeongsang basin, Cretaceous granitoids emplaced in relatively shallow depth occur in the Gyeonggi massif and central Okcheon belt.

Petrological characteristics of the Yeongdeok granite (영덕화강암의 암석학적 특징)

  • Woo, Hyeon-Dong;Jang, Yun-Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.31-43
    • /
    • 2014
  • The Yeongdeok granite emplaced in the eastern Yeongyang subbasin is typically a medium- to coarse-grained massive biotite granite. It intruded into Precambrian schist & gneiss complex and is unconformably overlain by Cretaceous sedimentary rocks. In this study, we attempt to investigate the magma type which formed Yeongdeok granite and estimate the emplacement depth using Al-in-hornblende geobarometer to mineral composition. According to the magma fractionation, $TiO_2$, $Al_2O_3$, $Fe_2O_3{^*}$, FeO, $Fe_2O_3$, MnO, MgO, CaO, $Na_2O$ and $P_2O_5$ show positive trend but $K_2O$ indicate negative trend with $SiO_2$ contents. Those are identified as calc-alkaline series in AFM diagram and show the chemical characteristics of the I-type magma through the oxidation tendency of the iron ion and the portion of the alkaline composition. When calculated using the equation of Hollister et al. (1987), the emplacement depths of the Yeongdeok granite range from 8.98 to 17.19 km and average depth was estimated 13.03 km approximately.

Petrologic and Mineralogic Studies on the Origin of Paleolithic Obsidian Implements from Wolseongdong, Korea (월성동 구석기 유적 출토 흑요석제 석기의 암석 및 광물학적 연구를 통한 원산지 추정)

  • Jang, Yun-Deuk;Park, Tae-Yoon;Lee, Sang-Mok;Kim, Jeong-Jin
    • Journal of the Korean earth science society
    • /
    • v.28 no.6
    • /
    • pp.733-742
    • /
    • 2007
  • Petrological, mineralogical, and geochemical analyses were carried on the paleolithic obsidian implements excavated at Wolseongdong, Daegu, Korea. The obsidians has a homogeneous glassy texture that can be observed in a typical obsidian formed from a rapid cooling of silicic magma. Major element composition of the obsidians represent calc-alkaline series. Comparing those with other obsidians from domestic local excavation sites, Mt. Baekdu, and Kyusu of Japan, the Wolseongdong obsidians show similar element distribution pattern with others in spite of small difference in trace and rare Earth element contents. Sr isotopes of the obsidians considerably differ from those of the obsidians from southern part of the Korean Peninsula or from Mt. Baekdu. K-Ar age is approximately 30 Ma, which is much older than Mt. Baekdu (10 Ma). Therefore, considering the characteristics of obsidians found in the Korean Peninsula including mineralogy, petrology, trace element, and isotopes chronology, the obsidians can be divided into four groups: Mt. Baekdu, southern part of Korea (Kyusu of Japan), middle part of Korea, and Wolseongdong region. These groups suggest a possibility of more than four different origins of the obsidians found in the Korean Peninsular.

Rb-Sr Whole-rock Isochron Age and Petrology of the Mt. Geumjeong Granite, Busan (부산 금정산화강암체의 암석학 및 Rb-Sr 전암 등시선 연대)

  • Yun Sung-Hyo;Koh Jeong-Seon;Park Kwang-Sun;Ahn Hyo-Chan;Kim Young-Il;Yoo Sung-Hyeon;Lee Dong-Han;Yun Gi-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • The granitoids in the Mt. Geumjeong, Busan can be divided into granodiorite, hornblende granite, adamellite, tonalite, biotite granite and micrographic granite. The geochemical characteristics of the Mt. Geumjeong granites indicate that they were crystallized from a calc-alkaline series and that they belong to Ⅰ-type granitic rocks which evolved from granodioritic magma into hornblende granite, adamellite, biotitie granite, and finally micrographic granite through fractional crystallization of plagioclase. The crystallization pressures and temperatures of the minimum melt compositions of the granitic rocks were estimated to about 1∼5 kbar and 720∼700℃. The trace element composition and REE patterns, characterized by a high LILE/HFSE ratio and enrichments in LREE, indicate typical continental margin arc calc-alkaline rocks produced in the subduction environment. The Rb-Sr isotopic data for the Mt. Geumjeong granites define a well-defined isochron yielding as age of 69.6±1.9 Ma with an initial Sr isotopic ratio of 0.70503.

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF

Petrology of the Cretaceous igneous rocks in Gadeog Island, Busan, Korea (부산 가덕도 지역 백악기 화성암류에 대한 암석학적 연구)

  • 고정선;김은희;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.47-63
    • /
    • 2004
  • This study focuses on the petrography and petrochemical characteristics of the volcanic and plutonic rocks in Gadeog island, Busan, Korea. Based on textural and mineralogical characteristics, intermediate volcanic rocks can be divided into andesitic lava flows (porphyritic and massive andesites) and andesitic pyroclastics. Felsic volcanic rocks are composed of rhyolite, rhyolitic welded tuff, and tuff breccia. Plutonic rocks are intruded rhyolite and andesitic rocks, and composed of hornblende granodiorite which contains lots of mafic magma enclaves. Volcanic rocks are composed of andesite, dacite and rhyolite having a range in SiO$_2$ from 59 to 78wt.%. The volcanic rocks belong to the calc-alkaline rock series. Plutonic rocks have a range in SiO$_2$ from 63 to 69wt.%. This compositional variations correspond to those of Cretaceous volcanic and plutonic rocks in the southeastern Gyeongsang basin. The trace element composition and rare earth element patterns of the volcanics, which are characterized by high LREE/HFSE ratios and enrichment in LREE, suggest that they are typical of calc-alkaline volcanic rocks produced in the subduction environment around continental arc. We concluded that volcanic and plutonic rocks in Gadeog Island were evolved from orogenic andesitic magma which was produced by partial melting of the mantle wedge in the subduction environment.

Petrochemical Study on the Micrographic Granite in the Wando Area (완도지역(莞島地域)에 분포하는 미문상화강암(微文象花崗岩)에 대한 암석화학적(岩石化學的) 연구(硏究))

  • Shin, In-Hyun;Nam, Ki-Sang;Kim, Hee-Nam;Park, Young-Seog;Ahn, Kun-Sang
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • Petrochemical study on the micrographic granite distributed in the Wando area, the southernmost part of the Yeongdong-Kwangju depression is performed to investigate the petrogenesis and differentiation processes of the granitic magma. Polarized light microscopy for modal analyses, electron probe microanalyses of feldspars and biotite, inductively coupled plasma analyses for major and trace element contents were adopted in the study. The lithology of the study area consists of Precambrian metasediments, Mesozoic volcanic and sedimentary rocks, and micrographic granite which intrude into the former. The micrographic granite in the Wando area are distributed in the shape of a cauldron. Modal and nonnative mineral analyses of the micrographic granite fall in the area of granite and granodiorite. The chemical composition indicates that the micrographic granite is I-type and magnetite series. The micrographic granite is characterized by more than 90% of micrographic texture in volume percent. Feldspars in the micrographic granite is alkali feldspars (Or, 45~93) and plagioclases (albite to oligoclase). The biotite has a intermediate composition between phlogopite and annite solid solution. The results of the petrochemical studies indicate that the granitic magma of calc-alkaline source materials reactivated in a compressional environment at the continental margin, and then was differentiated by fractional crystallization. The micrographic granite intruded into a shallow level of the crust (5~7 km) in the late Cretaceous.

  • PDF

The study on the Igneous Activity in the Southeastern Zone of the Ogcheon Geosynclinal Belt, Korea(I) with the Igneous Activity in Namweon-Geochang-Sangju Area (옥천지향사대(沃川地向斜帶) 동남대(東南帶)에서의 화성활동(火成活動)(I): 남원(南原)-거창(居昌)-상주(尙州) 지역(地域)을 중심(中心)으로)

  • Kim, Yong Jun;Park, Yong Seog;Choo, Seung Hwan;Oh, Mihn Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.355-370
    • /
    • 1989
  • Igneous rocks of study area consist of Pre-Cambrian orthogneiss, Devonian granite, Triassic foliated granites and Jurassic granites distributed along the southeast margin of Ogcheon Geosynclinal belt(SE-zone), and irregular shaped granitic stocks in the central part of the belt(C-zone). Anorthosite and gaabbro are also present in southern part of the SE-zone in the belt and intruded into gneiss complex of Ryongnam massif. Distribuition of foliated granites shows three linear arrangements which are composed of hornblende-biotite foliated granodiorite, porphyritic foliated granodiorite, biotite foliated granodiorite, leuco foliated granite and two mica foliated granite. Foliated granites generated by dextral strike slip movement at deep level. Jurassic granites composed of several rock facies are considered to be formed by differentiation of magma during Daebo Orogeny. A general trend of the chemical composition of these igneous rocks in study area suggests that most of them corresponding to calc-alkaline rock series was affected under orogeny and I-type granite except for two mica foliated granite. In chondrite normalised REE pattern of these igneous rocks, LREE shows more variable range and strong (-)Eu anomaly than HREE. Geochronological episodes of igneous activity from early Proterozoic to Cretaceous in SE-zone of Ogcheon Geosynclinal belt are two more Pre-Cambrian Orogeny, Devonian Orogeny(Variscan), Songrim Disturbance, Daebo Orogeny and Bulkuksa Disturbance.

  • PDF

Behaviors of the Fungicide Procymidone in Soils (살균제 Procymidone의 토양 중 동태)

  • Choi, Gyu-Il;Seong, Ki-Yong;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.123-131
    • /
    • 2005
  • This study was focused on adsorption, leaching, photolysis, and hydrolysis of the fungicide procymidone in soils. Adsorption type of procymidone on three different soil were well fitted to Linear and Freundlich isotherm. Distribution coefficients (Kd) were ranged from 2.75 to 12.18 and Freundlich isotherm Kf value $1.99{\sim}9.98$, 1/n value $0.74{\sim}0.89$. Desorption rates were $20.1{\sim}34.0%$ (Namgye), $26.3{\sim}44.6%$ (Jigog) and $31.6{\sim}50.9%$ (Baegsan series) and desorption hysteresis were $0.65{\sim}0.79,\;0.55{\sim}0.73\;and\;0.49{\sim}0.68$. Procymidone seemed to be stable to photolysis in acidic and neutral solutions but hydrolyzed rapidly in alkaline solution. Considering leaching properties procymidone mobility low in soils.

Petrological Study on the Intermediate-basic Plutonic Rocks in the Southwestern Part of the Korean Peninsula (한반도 서남부에 분포하는 중성-염기성 심성암류에 대한 암석학적 연구)

  • Kim, Yong-Jun;Park, Jae-Bong;Park, Byung-Kyu
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.528-538
    • /
    • 2006
  • Main aspect of this study is to clarify the petrochemistry and petrogenesis of intermediated-basic plutons located in the southwestern part of the Korean peninsula. These Intermediated-basic plutons consist of Pre-Cambrian anorthosite-gabbro, Triassic hornblende gabbro (Jirisan area), Jurassic diorite-syente (Jirisan and north area) and Cretaceous gabbro-diorite (south area). The Massif type anorthosite has multi intrusions, where each one intruded by gabbroic rocks, composed of gabbro, norite, troctolite and leucogabbro. In the variation diagram of the major-minor composition, AMF and Pl-Px-Ol diagrams, we suggest that intermediated-basic plutons in the southwestern part of the Korea show a trend consistent to Daly's value and calc-alkaline rock series. Accoding to REE (La/Yb)cw and Eu/Sm, these plutons are enriched with LREE than HREE, and emplaced by the tectonic setting in continent and/or continental margin.